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Interactions among neighboring birds in a flock cause an alignment of their flight directions. We
show that the minimally structured (maximum entropy) model consistent with these local correla-
tions correctly predicts the propagation of order throughout entire flocks of starlings, with no free
parameters. These models are mathematically equivalent to the Heisenberg model of magnetism,
and define an “energy” for each configuration of flight directions in the flock. Comparing flocks of
different densities, the range of interactions that contribute to the energy involves a fixed number
of (topological) neighbors, rather than a fixed (metric) spatial range. Comparing flocks of different
sizes, the model correctly accounts for the observed scale invariance of long ranged correlations
among the fluctuations in flight direction.

The collective behaviour of large groups of animals is
an imposing natural phenomenon, very hard to cast into
a systematic theory [1]. Physicists have long hoped that
such collective behaviours in biological systems could be
understood in the same way as we understand collec-
tive behaviour in physics, where statistical mechanics
provides a bridge between microscopic rules and macro-
scopic phenomena [2, 3]. A natural test case for this ap-
proach is the emergence of order in a flock of birds: out
of a network of distributed interactions among the indi-
viduals, the entire flock spontaneously chooses a unique
direction in which to fly [4], much as local interactions
among individual spins in a ferromagnet lead to a spon-
taneous magnetization of the system as a whole [5]. De-
spite detailed development of these ideas [6–9], there still
is a gap between theory and experiment. Here we show
how to bridge this gap, by constructing a maximum en-
tropy model [10] based on field data of large flocks of
starlings [11–13]. We use this framework to show that
the effective interactions among birds are local, and that
the number of interacting neighbors is independent of
flock density, confirming that interactions are ruled by
topological rather than metric distance [14]. The statis-
tical mechanics models that we derive in this way provide
an essentially complete, parameter free theory for the
propagation of directional order throughout the flock.

We consider flocks of European starlings Sturnus vul-
garis, as in Fig 1A. At any given instant of time, follow-
ing Refs [11–13], we can attach to each bird i a vector
velocity ~vi, and define the normalized velocity ~si = ~vi/|~vi|
(Fig 1B). On the hypothesis that flocks have statistically
stationary states, we can think of all these normalized ve-
locities as being drawn (jointly) from a probability dis-
tribution P ({~si}). It is not possible to infer this full dis-

FIG. 1: The raw data. (A) One snapshot from flocking event
28–10, N = 1246 birds (see Table I in Methods). (B) Instan-
taneous vector velocities of all the individuals in this snap-
shot, normalized as ~si = ~vi/|~vi|.

tribution directly from experiments, since the space of
states specified by {~si} is too large. However, what we
can measure from field data is the matrix of correlations
between the normalized velocities, Cij = 〈~si·~sj〉. There
are infinitely many distributions P ({~si}) that are consis-
tent with the measured correlations, but out of all these
distributions, there is one that has minimal structure: it
describes a system that is as random as it can be while
still matching the experimental data. This distribution
is the one with maximum entropy [10].

It should be emphasized that the maximum entropy
principle is not a “modeling assumption;” rather it is the
absence of assumptions. Any other model that accounts
for the observed correlations will have more structure,
and hence (explicitly or implicitly) assumes something
about the nature of the interactions in the flock beyond
what is required to match the data. Of course the fact
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that the maximum entropy model is minimally struc-
tured does not make it correct. It could be, for example,
that individual birds set their flight direction by comput-
ing a complicated nonlinear combination of the veloci-
ties from multiple neighbors, in which case correlations
among pairs of birds would be insufficient to capture
the essence of the ordering mechanism. We view the
maximum entropy model as a powerful starting point,
from which, as we will see, we can generate detailed and
testable predictions.

The maximum entropy distribution consistent with
the directional correlations Cij is

P ({~si}) =
1

Z({Jij})
exp

1

2

N∑
i=1

N∑
j=1

Jij ~si·~sj

 , (1)

where Z({Jij}) is the appropriate normalization factor,
or partition function; the derivation follows Ref [10], as
explained in Appendix A. Notice that there is one pa-
rameter Jij corresponding to each measured element Cij

of the correlation matrix. To finish the construction of
the model, we have to adjust the values of the Jij to
match the experimentally observed Cij,

〈~si·~sj〉P = 〈~si·~sj〉exp , (2)

where the symbol 〈·〉P indicates an average using distri-
bution P from Eq (1), whereas 〈·〉exp indicates an aver-
age over many experiments. This matching condition is
equivalent to maximizing the likelihood that the model
in Eq (1) will generate the data from which the correla-
tions were computed.

The probability distribution in Eq (1) is mathemati-
cally identical to a model that is familiar from the physics
of magnets—the Heisenberg model [5]—in which a col-
lection of spins ~si interact so that their energy (or Hamil-
tonian) isH({~si}) = −(1/2)

∑
i,j Jij ~si·~sj; Eq (1) then de-

scribes the thermal equilibrium or Boltzmann distribu-
tion at a temperature kBT = 1. In this context, the con-
stants Jij are the strength of interaction between spins
i and j, where J > 0 means that these elements tend
to align. For many physical systems, once we know the
Hamiltonian there is a plausible dynamics that allows
the system to relax toward equilbrium, and this is the
Langevin dynamics

d~si
dt

= −∂H
∂~si

+ ~ηi(t) =

N∑
j=1

Jij~sj + ~ηi(t) , (3)

where ~ηi(t) is an independent white noise “force” driv-
ing each separate degree of freedom. Finding trajectories
~si(t) that solve Eq (3) produces samples that are drawn
out of the probability distribution in Eq (1). The inter-
esting point is that this kind of dynamical model also
is well known in biology: the direction of motion of an
individual evolves in time according to “social forces”
reflecting a weighted sum of inputs from neighboring in-
dividuals, plus noise [4]. In this framework, Jij measures

the strength of the force that tries to align the velocity
of bird i along the direction defined by bird j. We em-
phasize that this is not an analogy, but a mathematical
equivalence.

In contrast to most networks, the connectivity in a
flock of birds is intrinsically dynamic—birds move and
change their neighbors. Thus, it may not make sense
to talk about matrix of correlations Cij or interactions
Jij between labelled individuals. On the other hand, the
continuous and rapid change of neighbors induced by
motion implies that the interaction Jij between bird i and
bird j cannot depend directly on their specific identities,
but only on some function of their relative positions.

The simplest form of interaction that is independent
of the birds’ identity is one in which each bird interacts
with the same strength, J , with the same number of
neighbors, nc (or with all birds within the same radius
rc; see below). If the interactions are of this form, then
Eq (1) simplifies to

P ({~si}) =
1

Z(J, nc)
exp

J
2

N∑
i=1

∑
j∈ni

c

~si·~sj

 , (4)

where j ∈ nic means that bird j belongs to the first nc
nearest neighbors of i. This is, in fact, the maximum
entropy model consistent with the average correlation
among birds within the neighborhood defined by nc,

Cint =
1

N

N∑
i=1

1

nc

∑
j∈ni

c

〈~si·~sj〉 ≈
1

N

N∑
i=1

1

nc

∑
j∈ni

c

~si·~sj . (5)

Biologically, Eq’s (4) and (5) encapsulate the concept
that the fundamental correlations are between birds and
their directly interacting neighbors; all more distant cor-
relations should be derivable from these. As in the more
general problem, finding the values of J and nc that re-
produce the observed correlation Cint is the same as max-
imizing the probability, or likelihood, that model Eq (4)
generates the observed configuration of flight directions
{~si} in a single snapshot. If this is correct, a model that
appropriately reproduces the fundamental correlations
up to the scale nc must be able to describe correlations
on all length scales.

Importantly, with large flocks we can estimate the cor-
relations among interacting neighbors from a single snap-
shot of the birds’ flight directions {~si}, as indicated in
the second step of Eq (5). In contrast, if we were trying
to estimate the entire correlation matrix in Eq (2), we
would need as many samples as we have birds in the flock
(see Appendix B), and we would have to treat explicitly
the dynamic rearrangements of the interaction network
during flight. This is an extreme version of the general
observation that the sampling problems involved in the
construction of maximum entropy models can be greatly
reduced if we have prior expectations that constrain the
structure of the interaction matrix [15, 16].
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FIG. 2: Setting the strength and range of interactions. (A) The predicted strength of correlation, Cint, as a function of the
interaction strength J , with nc = 11, for the snapshot in Fig 1. Matching the experimental value of Cint = 0.99592 determines
J = 45.73. Inset: Zoom of the crossing point; error bars are obtained from the model’s predictions of fluctuations of Cint(J, nc).
(B) The log–likelihood of the data per bird (〈lnP ({~si})〉exp/N) as a function of nc with J optimized for each value of nc;
same snapshot as in (A). There is a clear maximum at nc = 11. Inset: the log–likelihood per bird for other snapshots of
the same flocking event. (C) The inferred value of J for all observed flocks, shown as a function of the flock’s size. Each
point corresponds to an average over all the snapshots of the same flock. Error bars are standard deviations across multiple
snapshots. (D) As in (C), but for the inferred values of nc. Averaging over all flocks we find nc = 21.2 ± 1.7 (black line).

(E) The inferred value of the topological range n
−1/3
c as a function of the mean inter–bird distance in the flock, for all flocks.

Error bars are standard deviations across multiple snapshots of the same flock. (F) As in (E), but for the metric range rc.

Interactions extend over some fixed metric distance r0, then we expect n
−1/3
c ∝ r1/r0 and rc = constant; we find the opposite

pattern, which is a signature of interactions with a fixed number of topological neighbors [14].

We now apply this analysis to data on real flocks of
starlings. Given a snapshot of the flock, we have the con-
figuration {~si}, and we need to evaluate the probability
P ({~si}) in Eq (4) for any value of J and nc, then max-
imize this probability with respect to these parameters
(see Methods and the Appendices for details of the cal-
culation). Special care must be devoted to birds on the
outer edge, or border, of the flock, since these individu-
als have very asymmetric neighborhoods and may receive
inputs from signals outside the flock. If we take the flight
directions of these border birds as given, we can study
how information propagates through the flock, without
having to make assumptions about how the boundary is
different from the interior. Technically, then, we describe
the flock with Eq (4), but with the flight directions of
the border birds fixed (again, see Methods and especially
Appendix C for details).

We proceed as follows: For a single flock, at a given
instant of time, we compute the correlation Cint pre-
dicted by the model in Eq (4) as a function of the
coupling strength J , and compare it with the experi-
mental value of the correlation (Fig 2A). The equation
Cint(J, nc) = Cexp

int , fixes J(nc) for each value of nc. Then

we fix the interaction range by looking at the overall
probability of the data as a function of nc. In general
there is a clear optimum (Fig 2B), from which we finally
infer the maximum entropy value of both parameters,
nc and J . We repeat this procedure for every snapshot
of each flock, and compute the mean and standard de-
viation of the interaction parameters for each flock over
time. Alternatively, we can average the log–likelihood
over many snapshots, and then optimize, and this gives
equivalent results for J and nc (see Appendix E).

In Figures 2C and D we report the value of the inter-
action strength J and of the interaction range nc for all
flocks, as a function of the flock’s spatial size, L. The
inferred values of J and nc are reproducible, although
error bars are larger for smaller flocks. In particular, J
and nc do not show any significant trend with the flocks’
linear dimensions, with the number of birds, or with the
density. This did not have to be the case, nor is it in
any way built in to our framework; for example, if the
real interactions extended over long distances, then our
fitting procedure would produce an increase of nc and J
with the size of the flock.

In Figure 2E we also show that the interaction range



4

0 10 20 30 40
Distance r (m)

-0.04

-0.02

0

0.02

C
or

re
la

tio
n 

C
P (r)

Data
Model

0 20 40 60 80
L

0

10

20

30

 ξ
(m

)

A

0 10 20 30 40
Distance r2 (m)

0

0.002

0.004

C
or

re
la

tio
n 

C
4(r 1,r 2)

r1=0.5

B

Data
Model

i

j l

k

r1

r2 r1

B

0 10 20 30 40
Distance r (m)

-0.0003

0

0.0003

0.0006

C
L (r)

C
Data
Model

-1 -0.5 0 0.5 1
qi

0
2
4
6

P(
q i)

D

0 1 2 3 4
Distance from border (m)

0

0.2

0.4

0.6

0.8

1

O
ve

rla
p 

q

FIG. 3: Correlation functions predicted by the maximum entropy model vs experiment. The full pair correlation function
can be written in terms of a longitudinal and a perpendicular component, i.e. 〈~si · ~sj〉 = 〈sLi sLj 〉 + 〈~πi · ~πj〉. Since the two
components have different amplitudes, it is convenient to look at them separately. (A) Perpendicular component of the
correlation, CP(r) = 〈~πi · ~πj〉, as a function of the distance; the average is performed over all pairs ij separated by distance r.
Blue diamonds refer to experimental data (for the sample in Fig 1), red circles to the prediction of the model in Eq (4). The
dashed line marks the maximum r that contributes to Cint, which is the only input to the model. The correlation function is
well fitted over all length scales. In particular, the correlation length ξ, defined as the distance where the correlation crosses
zero, is well reproduced by the model. Inset: ξ vs. size of the flock, for all the flocking events; error bars are standard deviations
across multiple snapshots of the same flocking event. (B) Four–point correlation function C4(r1; r2) = 〈(~πi·~πj) (~πk·~πl)〉, where
the pairs ij and kl are as shown in the inset (see also Appendix G). The figure shows the behaviour of C4(r1; r2) as a function
of r2, with r1 = 0.5. (C) Longitudinal component of the correlation CL(r) = 〈sLi sLj 〉 − S2, as a function of distance. Note

that in the spin wave approximation, CL(r) = 1 − C4(0; r) − S2. (D) Similarity between the predicted mean value of flight
direction, 〈~πi〉, and real data, for all individual birds in the interior of the flock. The similarity can be quantified through the
local overlap qi = 〈~πi〉 · ~πexp

i /(|〈~πi〉||~πexp
i |), which is plotted as a function of the distance of the individual from the border.

Maximal similarity corresponds to qi = 1. Inset: full distribution P (q) for all the interior birds.

nc does not depend on the typical distance between
neighboring birds, r1, which is closely related to the
flock’s density. Of course, we can run exactly the same
method using a metric interaction range, rc, rather than
a topological range, nc. We simply set Jij = J if and only
if birds i and j lie within rc meters. When we do this we
find that the metric range rc does depend on the near-
est neighbor distance r1, in contrast with the topological
range nc (Fig 2F). This result provides strong support
for the claim put forward in Ref [14] that birds interact
with a fixed number of neighbors, rather than with all
the birds within a fixed metric distance.

Having fixed J and nc by matching the scalar cor-
relation in the flock, we have no free parameters—

everything that we calculate now is a parameter free
prediction. We begin by computing the correlations
between pairs of birds as a function of their distance,
C(r) ∼

∑
ij ~si·~sj δ(r − rij), as shown in Fig 3A. There is

extremely good agreement across the full range of dis-
tances. As we have seen, our maximum entropy calcula-
tion finds local interactions, i.e. a relatively small value
of nc (nc ∼ 20 for flocks of up to thousands birds). This
implies that the scalar correlation Cint, used as an exper-
imental input to the calculation, is the integral of C(r)
only over a very small interval close to r = 0: only the av-
erage value of pair correlations at very short distances is
used as an input to the calculation, whereas all the long
range part of C(r) is not. Nevertheless, we have very
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FIG. 4: Maximum entropy analysis for a model of self–
propelled particles. (A) Inferred value of the parameter J
vs. microscopic strength of alignment forces used in the sim-
ulation. (B) Inferred value of nc vs. the true number of in-
teracting neighbors in the simualtion. Slopes of the lines are
2.2 and 2.7, respectively. Error bars are standard deviations
across 45 snapshots of the same simulation.

good agreement out to the overall extent of the flock it-
self. This confirms our expectation that a model for the
local correlations is able to describe correlations on all
length scales. We draw attention to the fact that the
apparent correlation length, defined by C(r = ξ) = 0, is
predicted to scale with the linear size of the flock (ξ ∝ L,
inset to Fig 3A), as observed experimentally.

Correlations exist not just between pairs of birds, but
among larger n–tuplets. In Fig 3B we consider the corre-
lations among quadruplets of birds. Although these cor-
relations are small, their shape is nontrivial and quite
noiseless. The model, which takes only local pairwise
correlations as input, reproduces very accurately these
4-body correlations, including a non–monotonic depen-
dence on distance, out to distances comparable to the
full extent of the flock. Again, this is not a fit, but a
parameter free prediction.

Finally, instead of measuring correlations, we can ask
the model to predict the actual flight directions of indi-
vidual birds in the interior of the flock, given the direc-
tions chosen by birds on the borders. This can’t work
perfectly, since the model predicts that individual birds
have an element of randomness in their choice of direc-
tion relative to their neighbors, but as shown in Fig 3D
the overlap between predicted and observed directions
is very good, not just for birds close to the border but
throughout the entire “thickness” of the flock.

The maximum entropy model has a mechanistic inter-
pretation, from Eq (3), in terms of social forces driving
the alignment of the flight directions. Given the suc-
cess of the model in predicting the propagation of order
throughout the flock, it is interesting to ask whether we
can take this mechanistic interpretation seriously. As a
test, we have simulated a population of self–propelled
particles in three dimensions moving according to social
forces that tend to align each particle with the average
direction of its neighbors, as described by Eqs. (9) and
(10) in the Methods. We then compared the simula-
tion parameters (J sim, nsimc ) to the values (Jmem, nmem

c )
obtained by applying the maximum entropy method to

snapshots drawn from the simulation, just as we have
analyzed the real data. Both the strength and the range
of the interaction given by the maximum entropy anal-
ysis are proportional to the “microscopic” parameters
used in the simulation (Figs 4A and B), although the
maximum entropy interaction range nmem

c is roughly 3×
larger than the true number of interacting neighbors,
nsimc . We believe that this overestimation is due to the
fact that birds (unlike spins) move through the flock,
encountering new neighbors before losing memory of the
earlier flight directions, and in so doing propagate infor-
mation and correlation more effectively than if they were
sitting on a fixed network. In other words, the maximum
entropy model, where interactions are static by construc-
tion, compensates the dynamical nature of the true in-
teraction network by giving a larger effective value of nc.
Hydrodynamic theories of flocking [6, 8] provide an an-
alytic treatment of this effect, which is essential for col-
lective motion of large two–dimensional groups. Indeed,
in the limit of very large flocks, this ratio between the
microscopic range of interactions and the effective range
recovered by maximum entropy methods could become
arbitrarily large, but the flocks we study here seem not
to be big enough for this effect to take over. If we use
the “calibration” of model from Fig 4B, then the obser-
vation of nc = 21.6 in the real flocks (Fig 2) suggests that
the true interactions extend over nc = 7.8, in reasonable
agreement with the result from [14, 20], nc = 7.0 ± 0.6
using very different methods.

To summarize, we have constructed the minimal
model that is consistent with a single number charac-
terizing the interactions among birds in a flock, the av-
erage correlation between the flight directions of imme-
diate neighbors. Perhaps surprisingly, this provides an
essentially complete theory for the propagation of di-
rectional order throughout the flock, with no free pa-
rameters. The theory predicts major qualitative effects,
such as the presence of long ranged, scale free correla-
tions among pairs of birds, as well as smaller, detailed ef-
fects such as the non–monotonic distance dependence of
(four–point) correlations among two pairs of birds. The
structure of the model corresponds to interactions with
a fixed number of (topological) neighbors, rather than
with all neighbors that fall within a certain (metric) dis-
tance; the relevant number of neighbors and the strength
of the interaction are remarkably constant across multi-
ple flocking events. Our approach can be seen as part of a
larger effort using maximum entropy methods to link the
collective behaviour of real biological systems to theories
grounded in statistical mechanics [21–33]. As with these
other examples, we view the success of our theory as an
encouraging first step. We have focused on the flight di-
rections, taking the positions of the birds as given. A full
theory must connect the velocities of the birds to their
evolving positions, which requires more accurate mea-
surements of trajectories over time, and we must con-
sider the fluctuations in the speed as well as direction of
flight. There are maximum entropy approaches to both
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of these problems, and the mapping from maximum en-
tropy models to statistical mechanics suggests that the
observation of scale free correlations in speed fluctua-
tions [17] will locate models of flocking at an especially
interesting point in their parameter space [34].
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Methods

Data. Analyzed data were obtained from experi-
ments on large flocks of starlings (Sturnus vulgaris), in
the field. Using stereometric photography and innova-
tive computer vision techniques [12, 13] the individual
3D coordinates and velocities were measured in cohe-
sive groups of up to 4268 individuals [11, 14, 17]. The
data-set comprises 21 distinct flocking events (see Table
I). Each event consists of up to 40 consecutive 3D con-
figurations (individual positions and velocities), at time
intervals of 1/10 s.

Analytic approach to the maximum entropy

model. To apply the maximum entropy analysis, we
need to compute the expected values of correlation
functions according to the measure defined in Eq (1).
This requires the computation of the partition function
Z({Jij}), which is, in general, a hard task. Flocks,
however, are very ordered groups, in that birds’ ve-
locities are neatly aligned to each other [17]. In this
case we can use the “spin wave” approximation [18],
which exploits the strong ordering condition. Let us

call ~S = (1/N)
∑

i ~si = S ~n the global order parame-
ter, or polarization, measuring the degree of collective
alignment, where ~n is a unit vector. Individual orienta-
tions can be rewritten in terms of a longitudinal and a
perpendicular component: ~si = sLi ~n+~πi. If the system is
highly polarized, S ∼ 1, |~πi| � 1, and sLi ∼ 1 − |~πi|2/2;
we verify this last condition for our data in Fig 5 of Ap-
pendix B. The partition function can be written as an
integral over the {~π}, and if S ∼ 1 the leading terms are
(see Appendix B for details):

Z({Jij}) ≈
∫
dN ~π exp

−1

2

N∑
i,j=1

Aij~πi · ~πj +
1

2

N∑
i,j=1

Jij

,
(6)

where Aij =
∑
k Jikδij − Jij, dN ~π =

∏
i d~πi and the {~πi}

satisfy the constraint
∑
i ~πi = 0 . If we consider the flight

directions of birds on the border as given, integration
must be performed with respect to internal variables only
(see Appendix D). After some algebra one gets

Z({Jij};B) =

∫
dI~π exp

−1

2

∑
i,j∈I

Aij~πi · ~πj +
∑
i∈I

~πi · ~hi +
1

2

∑
i,j∈I

Jij +
1

2

∑
i∈I

hLi +
1

2

∑
i,j∈B

Ji,j~si · ~sj

 . (7)

Here I and B represent the subsets of, respectively, in-

ternal and border individuals; ~hi =
∑

l∈B Jil~sl is a ‘field’
describing the influence of birds on the border on inter-
nal bird i; and, now, Aij = δij(

∑
k∈I Jik +

∑
l∈B Jils

L
l ).

The integral in Eq (7) can be carried out explicitly; see
Eq (D6). The reduced model in Eq (4) corresponds to
Jij = J nij, with nij = 1, 1/2, or 0 according to whether
both individuals, just one, or none, belong to the local
nc-neighborhood of the other. Given the individual coor-
dinates of birds in space, the matrix Aij can be computed
for any given snapshot, and Z(J, nc;B) (and correlation
functions) can be calculated as a function of J and nc.
These two parameters must then be adjusted to maxi-
mize the log–likelihood of the data,〈

logP ({~si})
〉

exp

= − logZ(J, nc;B) +
1

2
JncNC

exp
int .

(8)

Maximizing with respect to J corresponds to equating
expected and experimental correlations. In our case, this
equation can be solved analytically, leading to an explicit
expression of the optimal J vs. nc; see Eq (D12). Min-
imization with respect to nc can then be performed nu-
merically. A graphical visualization of the solution can
be found in Fig. 2.

Self-propelled particle model. We consider a
model of self–propelled particles extensively studied in
the literature [9]. Each particle moves with vector veloc-
ity ~vi(t) according to the following equations:

~vi(t+ 1) = v0Θ

α∑
j∈ni

c

~vj(t) + β
∑
j∈ni

c

~fij + nc ~ηi

(9)

~xi(t+ 1) = ~xi(t) + ~vi(t) , (10)

where Θ is a normalization operator Θ(~y) = ~y/|~y| that
serves to keep the speed fixed at |~v| = v0, and j ∈ nic
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means that j belongs to the nc interacting neighbors of i.

The distance–dependent force ~fij acts along the direction
connecting i and j; following Ref [9], if ~eij is the unit
vector between i and j, we take

~fij(rij < rb) = −∞ ~eij (11)

~fij(rb < rij < ra) =
1

4
· rij − re
ra − re

~eij (12)

~fij(ra < rij < r0) = ~eij, (13)

Finally, ~ηi is a random unit vector, independent for each
bird and at each moment of time. The parameters α
and β tune the strength of the alignment and of the co-
hesion force, respectively; in particular, the strength of
alignment is given by J = v0α/nc. To test the maximum
entropy analysis, we modified the model in such a way
that we could vary nc. Specifically, we introduced an an-
gular resolution µ such that only neighbors with mutual
angles larger than µ were included in the neighborhood.
When µ is of the order of the Voronoi angle the model
is statistically equivalent to the original version (where
Voronoi neighbors were considered), but increasing (de-
creasing) µ one can decrease (increase) the value of nc.
In this way both the number nc of interacting neighbors
and the strength of the interaction J can be arbitrarily
tuned. Parameters were chosen as r0 = 1 (to set the
scale of distance), rb = 0.2, re = 0.5, ra = 0.8, α = 35,
β = 5, v0 = 0.05, and we simulated a flock of N = 512
birds.

Appendix A: Maximum entropy approach

The maximum entropy method has a long history.
Recent developments in experimental methods have re-
newed interest in this idea as a path for constructing sta-
tistical mechanics models of biological systems directly
from real data, with examples drawn from networks of
neurons [21–26], ensembles of amino acid sequences [27–
30], biochemical and genetic networks [31, 32], and the
statistics of letters in words [33]. Here we give a review of
the basic ideas leading to Eq (1) of the main text, hoping
to make the discussion accessible to a wider readership.

Imagine a system whose state at any one in-
stant of time is described by a set of variables
{x1, x2, · · · , xN} ≡ x. For the moment we don’t need
to specify the nature of these variables—they could be
positions or velocities of individual birds i = 1, 2, · · ·N
in a flock, or more subtle parameters of body shape or
instantaneous posture. Whatever our choice of variables,
we know that when the number of elements in the system
N (here, the number of birds in the flock) becomes large,
the space x becomes exponentially larger. Thus there is
no sense in which we can “measure” the distribution of
states taken on by the system, because the number of
possibilities is just too large. On the other hand, we can
obtain reliable measurements of certain average quanti-
ties that are related to the state x. To give a familiar

Event N S v0 (m/s) L (m)

17–06 552 0.935 9.4 51.8

21–06 717 0.973 11.8 32.1

25–08 1571 0.962 12.1 59.8

25–10 1047 0.991 12.5 33.5

25–11 1176 0.959 10.2 43.3

28–10 1246 0.982 11.1 36.5

29–03 440 0.963 10.4 37.1

31–01 2126 0.844 6.8 76.8

32–06 809 0.981 9.8 22.2

42–03 431 0.979 10.4 29.9

49–05 797 0.995 13.9 19.2

54–08 4268 0.966 19.1 78.7

57–03 3242 0.978 14.1 85.7

58–06 442 0.984 10.1 23.1

58–07 554 0.977 10.5 19.1

63–05 890 0.978 9.9 52.9

69–09 239 0.985 11.8 17.1

69–10 1129 0.987 11.9 47.3

69–19 803 0.975 13.8 26.4

72–02 122 0.992 13.2 10.6

77–07 186 0.978 9.3 9.1

TABLE I: Summary of experimental data. Flocking events
are labelled according to experimental session number and to
the position within the session they belong to. The number
of birds N is the number of individuals for which we obtained
a 3D reconstruction of positions in space. The polarization S
is defined in the Methods and in Appendix B. The linear size
L of the flock is defined as the maximum distance between
two birds belonging to the flock. The speed v0 is that of the
centre of mass, i.e. the mean velocity of the group. All values
are averaged over several snapshots during the flocking event.

example, we can’t measure the velocity of every electron
in a piece of wire, but certainly we can measure the aver-
age current that flows through the wire. Formally, there
can be several such functions, f1(x), f2(x), · · · , fK(x),
of the state x. The minimally structured distribution
for these data is the most random distribution P (x)
that is consistent with the observed averages of these
functions {〈fν(x)〉exp}, where 〈· · ·〉exp denotes an aver-
age measured experimentally.

To find the “most random” distribution, we need a
measure of randomness. Another way to say this is that
we want the distribution P (x) to hide as much infor-
mation about x as possible. One might worry that in-
formation and randomness are qualitative concepts, so
that there would be many ways to implement this idea.
In fact, Shannon proved that there is only one measure
of randomness or available information that is consis-
tent with certain simple criteria [35, 36], and this is the
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entropy

S [P ] = −
∑
x

P (x) lnP (x) . (A1)

Thus we want to maximize S [P ] subject to the con-
straint that the expectation values computed with P
match the experimentally measured ones, that is

〈fµ(x)〉exp = 〈fµ(x)〉P ≡
∑
x

P (x)fµ(x) (A2)

for all µ [10]. The distribution P (x) must also be nor-
malized, and it is convenient to think of this as the state-
ment that the average of the “function” f0(x) = 1 must
equal the “experimental” value of 1. Our constrained
optimization problem can be solved using the method of
the Lagrange multipliers [19]: we introduce a generalized
entropy function,

S [P ; {λν}] = S [P ]−
K∑
µ=0

λµ [〈fµ(x)〉P − 〈fµ(x)〉exp] ,

(A3)
where a multiplier λµ appears for each constraint to be
satisfied, and then we maximize S with respect to the
probability distribution P (x) and optimize it with re-
spect to the parameters {λν}.

Maximizing with respect to P (x) give us

0 =
∂S [P ; {λν}]
∂P (x)

=
∂S [P ]

∂P (x)
−

K∑
µ=0

λµ
∂〈fµ(x)〉P
∂P (x)

= − lnP (x)− 1−
K∑
µ=0

λµfµ(x), (A4)

⇒ P (x) =
1

Z({λν})
exp

[
−

K∑
µ=1

λµfµ(x)

]
, (A5)

where Z({λν}) = exp(−λ0 − 1). Since optimizing with
respect to λ0 will enforce normalization of the distribu-
tion, we can write, explicitly,

Z({λν}) =
∑
x

exp

[
−

K∑
µ=1

λµfµ(x)

]
. (A6)

Optimizing with respect to {λν} gives us a set of K
simultaneous equations

0 =
∂S [P ; {λν}]

∂λµ

= 〈fµ(x)〉exp − 〈fµ(x)〉P

⇒ 〈fµ(x)〉exp =
1

Z({λν})
∑
x

fµ(x) exp

[
−

K∑
µ=1

λµfµ(x)

]
.

(A7)

Thus, when we optimize S with respect to the parame-
ters {λν} we are enforcing that the expectation values of
the {fµ(x)} agree with their experimental values, which
is the starting point of the maximum entropy construc-
tion. Note also that, if we substitute Eq (A5) back into
Eq (A3), we obtain

S [P ; {λν}] = lnZ({λν}) +

K∑
µ=0

λµ〈fµ(x)〉exp , (A8)

which is minus the log probability, or likelihood, that the
model generates the observed data. The optimal values
of {λν} correspond to minima of S, as can be checked by
considering the second derivatives. Therefore, the max-
imum entropy approach also corresponds to maximizing
the likelihood that the model in Eq (A6) generates the
observed data.

The maximum entropy distributions are familiar from
statistical mechanics. Indeed we recall that a system in
thermal equilibrium is described by a probability distri-
bution that has the maximum possible entropy consis-
tent with its average energy. If the system has states
described by a variable x, and each state has an energy
E(x), then this equilibrium distribution is

P (x) =
1

Z(β)
e−βE(x), (A9)

where β = 1/kBT is the inverse temperature, and the
partition function Z(β) normalizes the distribution,

Z(β) =
∑
x

e−βE(x). (A10)

In this view, the temperature is just a parameter we have
to adjust so that the average value of the energy agrees
with experiment. The fact that equilibrium statistical
mechanics is the prototype of maximum entropy models
encourages us to think that the maximum entropy con-
struction defines an effective “energy” for the system.
Comparing Eq’s (A5) and (A9) gives us

E(x) =

K∑
µ=1

λµfµ(x), (A11)

and an effective temperature kBT = 1. This is a mathe-
matical equivalence, not an analogy, and means that we
can carry over our intuition from decades of theoretical
work on statistical physics.

In this paper, we discuss the case where the pairwise
correlations 〈~si·~sj〉 are measured experimentally. Thus
we can use the general maximum entropy formulation,
identifying x = {~si} and fµ(x) = ~si · ~sj. Since the quan-
tities that will be measured refer to pairs, it is useful to
set λµ = −Jij, and we obtain Eq (1),

P ({~si}) =
1

Z({Jij})
exp

1

2

N∑
i=1

N∑
j=1

Jij~si·~sj

 . (A12)
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As before, the parameters {Jij} must be adjusted so that
〈~si·~sj〉P = 〈~si·~sj〉exp.

The model defined by Eq (A12) is identical to a well
known model for magnetism, the Heisenberg model. In
that case, the model describes individual spins, which
tend to mutually align according to the interactions Jij.
In this context, the effective energy is

E({~si}) = −1

2

N∑
i=1

N∑
j=1

Jij~si·~sj. (A13)

For Jij > 0, the energy is lowered when the vectors ~si
and ~sj are parallel.

Appendix B: The spin wave approximation

The most demanding step in evaluating the probabil-
ity distribution in Eq (A12) is the computation of the
partition function

Z({Jij}) =

∫
dN~s exp

1

2

N∑
i=1

N∑
j=1

Jij~si·~sj

 , (B1)

where we recall that the {~si} are real, three dimensional
vectors of unit length and dN~s =

∏
i d~si.

In presence of strong ordering, we can use the “spin
wave” approximation to compute analytically the par-
tition function of the Heisenberg model, Eq (B1). Let

us call ~S = (1/N)
∑
i ~si = S~n the global order param-

eter, or polarization, measuring the degree of collective
alignment, where ~n is a unit vector. Individual orienta-
tions can be rewritten in terms of a longitudinal and a
perpendicular component with respect to ~n,

~si = sLi ~n+ ~πi , (B2)

where, by construction,
∑

i s
L
i = SN , ~πi · ~n = 0, and∑

i ~πi = 0. The partition function then reads

Z({Jij}) =

∫
dNsL dN ~π

[∏
i

δ
(
(sLi )2 + |~πi|2 − 1

)]
δ

(∑
i

~πi

)
exp

1

2

N∑
i=1

N∑
j=1

Jij
(
sLi s

L
j + ~πi·~πj

) , (B3)

where dNsL =
∏

i ds
L
i and dN ~π =

∏
i d~πi. The delta

functions implement the constraint on the length of each
vector ~si and the global constraint on the ~πi. Note that
since the {~πi}’s belong to the subspace perpendicular to
~n, in Eq (B4) there are only two independent degrees of
freedom for each integration variable.

If the system is highly polarized, S ∼ 1 and |~πi| � 1.

The constraint on the norm of the vectors can then be
written as sLi ∼ 1− |~πi|2/2. Note that indeed flocks are
very polarized groups and this expression is very well
satisfied by the data (see Fig 5 and Table I). Using this
expansion the longitudinal components can be integrated
out easily. The partition function then becomes, to lead-
ing order in the ~π’s,

Z({Jij}) =

∫
dN ~π

∏
i

1√
1− |~πi|2

 δ

(∑
i

~πi

)
exp

−1

2

N∑
i,j=1

Aij~πi · ~πj +
1

2

N∑
i,j=1

Jij

 (B4)

with

Aij =
∑
k

Jikδij − Jij . (B5)

The product over 1/

√
1− |~πi|2 in Eq (B4) is the Jaco-

bian coming from the integration over the si
L. This term

gives rise to sub–leading contributions in the spin wave

approximation, and we shall drop it. We have checked in
our computations that the corrections due to this term
are indeed negligible.

The matrix A is, by construction, a positive semi–
definite matrix. We can find eigenvalues ak and eigen-
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vectors wk as usual through∑
j

Aijw
k
j = akw

k
j . (B6)

There is one zero eigenvalue, a1 = 0, cor-
responding to the constant eigenvector ~w1 =
(1/
√
N, 1/

√
N, · · · , 1/

√
N):∑

j

Aijw
1
i =

1√
N

∑
j

Aij = 0. (B7)

The argument of the delta function in Eq (B4) is re-

lated only to the projection of the {~πi} onto this zero
mode. We note that in a system with translation in-
variance, the eigenvectors are Fourier modes, or plane
waves, and these are called spin waves in the theory of
magnetism. The zero eigenmode is related to the spon-
taneous breaking of symmetry when the flock chooses a
consensus direction of flight—all directions ~n are equally
probable, a priori, and hence have equal probability or
energy, and the zero mode is the remanent of this sym-
metry; in physics this is the Goldstone mode.

We can now rewrite Eq (B4) in the orthonormal basis
defined by {~wk}:

Z({Jij}) =

∫
dN ~π′ δ (~π′1) exp

−1

2

N∑
k=1

ak|~π′k|2 +
1

2

N∑
i,j=1

Jij

, (B8)

where ~π′k =
∑

i w
k
i ~πi. This leads to

logZ({Jij}) = −
∑
k>1

log(ak) +
1

2

N∑
i,j=1

Jij , (B9)

where we drop constant terms independent of Jij.
Let us now proceed, at a formal level, with the maxi-

mum entropy approach. The parameters Jij are fixed by
requiring that 〈~si·~sj〉P = 〈~si·~sj〉exp. If we focus on the
perpendicular part of the correlation, this implies

〈~πi·~πj〉exp = 2
∑
k>1

wki w
k
j

ak
, (B10)

where the right hand side, the expectation value 〈~πi·~πj〉P ,
can be obtained from Eq (B8) using Gaussian integration
rules, the factor 2 coming from the two independent de-
grees of freedom of each ~πi. According to this equation,

0.88 0.92 0.96 1
Longitudinal component sL

0.88

0.92

0.96

1

Ex
pa

ns
io

n 
1-

( π
2 )/2

A

Data

FIG. 5: Longitudinal components of the flight directions vs.
prediction of the spin wave expansion, for all individuals in
the snapshot of Fig 1. The black line has slope 1. Note that
95% of the birds have sLi > 0.94, and lie well on the line.

the matrix Aij—and therefore the interaction matrix
Jij—is easily obtained by taking the inverse of the exper-
imental perpendicular correlation function (once we take
away the zero mode due to symmetry). But, to be in-
vertible, the experimental correlation matrix must have
N − 1 nonzero eigenvalues. This can only be achieved
by performing a huge number of experiments, i.e. eval-
uating the experimental average over a number of in-
dependent samples larger than the number of birds in
the flock. As discussed in the main text, the interac-
tion network in a flock changes continuously in time,
since individuals move and change their neighbors. But
the average over many independent realizations of 〈~si·~sj〉
would require birds to stay still at some fixed positions,
while updating and realigning their velocities, which is
definitely not the case. In other terms, different experi-
mental samples (i.e. snapshots) correspond to different
networks Jij and cannot be averaged together. Thus, in
our case, the maximum entropy model must be solved
independently at each time step, for which we have only
one experimental sample. Unfortunately, if we compute
the correlation matrix from a single snapshot, it has rank
two and cannot be inverted. This motivates, as discussed
in the text, the analysis of a more restricted problem, in
which we know only the average local correlations Cint

from Eq (5).

Appendix C: Computation with free boundaries

Let us now address more in details the reduced model,
Eq (5) in main text, where each individual interacts with
constant strength with its first nc neighbors. In this case
the Jij’s have a particularly simple form:

Jij = J nij (C1)
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with

nij =



1 if j ∈ nic and i ∈ njc ,

1
2 if j ∈ nic and i /∈ njc , or vice versa, and

0 otherwise.
(C2)

Here, J indicates the strength of the interaction and nic
indicates the set of the first nc neighbors of bird i. Since
we know the spatial coordinates of all the birds in the
flock, once the parameter nc is fixed, we can compute
all the neighborhoods and determine the matrix nij. In

this case, therefore, Aij = JÃij, where Ã depends only
on the neighborhood relations.

Before proceeding with the full computation, let us
briefly look at the simplest case, where we allow all the
~πi’s to freely fluctuate according to Eq (B8). The result
can be read directly from Eq (B9), giving

logZ(J, nc) = −1

2

∑
k>1

log(Jλk) +
NJnc

2
, (C3)

where the λk are the eignevalues of Ã. Similarly, we can
compute the correlation functions,

〈~πi · ~πj〉 =
2

J

∑
k>1

wki w
k
j

λk

〈sLi sLj 〉 = 1− 1

J

∑
k>1

(wki )2 + (wkj )2

λk
(C4)

where λk and wk are, again, the eigenvalues and the
eigenvectors of the matrix Ã and depend only on nc.

To build the maximum entropy model, we need to find
the appropriate values for J and nc. As discussed in Ap-
pendix A, this amounts to maximizing the log–likelihood
of the experimental data given the model. This can be
written simply as〈

logP ({~si})
〉

exp

= − logZ(J, nc) +
1

2
JNncC

exp
int ,

(C5)
where, following the notation in the main text,

Cint =
1

N

∑
i

1

nc

∑
j∈ni

c

〈~si · ~sj〉 (C6)

indicates the degree of correlation up to the interaction
range nc.

Maximizing with respect to J , which corresponds to
setting Cint(J, nc) = Cexp

int , gives immediately

1

J
=
nc
2

(1− Cexp
int ) . (C7)

This equation provides an explicit relationship between
J and nc. Substituting into Eq (C5), the likelihood be-
comes a function of nc only, and its maximum can be
found numerically.

The values of J and nc, obtained from this computa-
tion with free boundaries, are displayed in Fig 6, for all
the flocking events we analyzed. They are strongly cor-
related to what we find with fixed boundary conditions
(see next section): the value of nc is slightly smaller, the
value of J slightly larger, but the product Jnc is approx-
imately the same. On the contrary, the prediction for
the perpendicular correlation as a function of distance
(Fig 6C and D) is less satisfactory: while the correlation
length is correctly reproduced, the decay of the corre-
lation with distance is significantly faster. Besides, the
value of the perpendicular correlation near r = 0 looks
much smaller than the experimental value. To better
understand this point we note that

Cint = CP
int + S +

1− 1

N

∑
i

1

nc

∑
j∈nc

i

〈|~πj|2〉

 , (C8)

where, we recall, S is the polarization. The first term
in this decomposition of Cint represents the perpendicu-
lar part of the correlation up to scale nc, while the last
term is a ‘local’ polarization getting contributions only
from individuals on a scale nc. The maximum entropy
model, by construction, reproduces correctly the experi-
mental value of Cint. What happens in the computation
with free boundaries is that the model underestimates
the contribution on short scales (n < nc, corresponding
to spatial scales of a few meters) from the perpendicular
part of the correlation, and compensates by overestimat-
ing the polarization. The effect is more or less strong in
different flocks, as seen in Figs 6C and D.

As discussed in the main text, there are good reasons
to think that birds on the edge of the flock should be
described differently from those in the bulk; Fig 6C is
evidence that if we ignore these differences we really do
fail to predict correctly the correlation structure of the
flock as a whole.

Appendix D: Computation with fixed boundaries

To improve our approach, we need to consider more
appropriate boundary conditions. As discussed in the
main text, birds on the border of the flock are likely
to behave differently from birds in the interior of the
flock. This occurs because they experience a different
kind of neighborhood, part of the space around them
being devoid of neighbors. Besides, these birds are con-
tinuously exposed to external stimuli and their dynamics
may be strongly influenced by environmental factors (ap-
proaching predators, obstacles, nearby roosts, ...). Thus,
modelling birds on the border might require taking into
account other ingredients than the interactions between
individuals. Rather than trying to making a model of
these (largely unknown) factors, we can take the veloc-
ities of these border birds as given, and ask that our
model of interactions predict the propagation of order
throughout the bulk of the flock.
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FIG. 6: Computation with free boundary conditions vs computation with fixed flight directions on the border. (A) Values
of the parameter nc for all the flocking events; the black line is the linear regression. Error bars are standard deviations
across multiple snapshots of the same flock. (B) Values of the parameter J for all the flocking events. Inset: The product
Jnc computed with free boundary vs. Jnc computed with fixed boundary; now the slope is almost unity. (C) and (D)
Perpendicular correlation as a function of distance for event 28–10 (as in Fig 1; N = 1246 birds) and event 32–06 (N = 809
birds). Different symbols correspond to the correlation measured in experiments, the correlation computed with free boundary
conditions and the one computed with fixed boundary conditions. Taking into account the flight directions of individuals on
the border significantly improves the prediction for the correlation.

If we consider the flight directions of birds on the bor-
der as given, the computation of the partition function
becomes more complicated. The starting point is analo-
gous to Eq (B1), but the integration must be performed
with respect to internal variables only. It is then con-

venient to separate, in the exponent of Eq (B1), contri-
butions coming from internal and external birds. Let us
call I and B the subsets of internal and border individu-
als, respectively. Then, in the spin wave approximation,
we find an expression similar to Eq (B4):

Z({Jij};B) =

∫
dI~π δ

(∑
i

~πi

)
exp

−1

2

∑
i,j∈I

Aij~πi · ~πj +
∑
i∈I

~πi · ~hi +
1

2

∑
i,j∈I

Jij +
1

2

∑
i∈I

hLi +
1

2

∑
i,j∈B

Jij~si · ~sj

 ,

(D1)

where

~hi =
∑
l∈B

Jil~sl =
∑
l∈B

Jil
(
sLl ~n+ ~πl

)
= hLi ~n+ ~hPi

(D2)

Aij = δij

(∑
k∈I

Jik + hLi

)
− Jij i, j ∈ I (D3)

Here ~hi is a ‘field’ describing the influence of birds on

the border on internal bird i. The effect of this field
is to align bird i with the border birds that are within
its direct interaction neighborhood nic. Thus, when nc
is small, this field only acts on individuals close to the
border, while it is zero well inside the flock. We also
note that, as compared to Eq (B4), the matrix A is now
defined only for internal birds and gets an additional di-
agonal contribution coming from individuals on the bor-
der. As a result, A has no longer a zero mode. From
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a conceptual point of view, when we fix the direction of
motion of birds on the border, not all directions in the
bulk are a priori equivalent; rather, the boundary con-
ditions explicitly break the symmetry. From a computa-

tional point of view, this implies that we cannot express
in a simple way the constraint on the {~πi}’s as we did in
the case of a free boundary.

To deal with the constraint, it is convenient to use an integral representation of the delta function

δ

(∑
i

~πi

)
=

∫
d~z

(2π)2
exp

[
i~z ·
∑
i

~πi

]
. (D4)

Substituting into Eq (D1), we obtain

Z({Jij};B) =

∫
d~z

(2π)2

∫
dI~π exp

−1

2

∑
i,j∈I

Aij~πi · ~πj +
∑
i∈I

~πi ·
(
~hPi + i~z

)
+ i~z ·

∑
l∈B

~πl +G(B)

 , (D5)

where G(B) is a function of boundary variables only. We notice that all the integrals are Gaussian, and we obtain,
finally,

lnZ ({Jij};B) =
1

2

∑
ij∈I

(A−1)ij ~h
P
i · ~hPj − ln det(A)− ln

∑
ij∈I

(A−1)ij

− 1

2

[∑
l∈B ~πl +

∑
ij∈I(A−1)ij~h

P
j

]2
∑

ij∈I(A−1)ij

+
1

2

∑
ij∈I

Jij +
∑
i∈I

hLi +
∑
lm∈B

Jlm~sl · ~sm, (D6)

where G(B) is written explicitly. Recall that the matrix A is only defined on internal individuals and hence the
number of eigenvalues that contribute to the computation of det(A) is given by the number of internal birds. In the
same way, we can easily compute correlation functions. We find

〈~πi〉 =
∑
j∈I

(A−1)ij~h
P
i −

∑
j∈I(A−1)ij∑
kj∈I(A−1)kj

∑
l∈B

~πl +
∑
kj∈I

(A−1)kj~h
P
j

 , (D7)

and

〈~πi · ~πj〉 = 〈~πi〉 · 〈~πj〉+ 2

[
(A−1)ij −

∑
kn∈I(A−1)ik(A−1)nj∑

kn∈I(A−1)kn

]
. (D8)

At this point, to solve the maximum entropy model for
the reduced case, we simply substitute the parametriza-
tion Jij = Jnij. The log–likelihood takes the form〈

logP ({~si})
〉

exp

= − logZ(J, nc;B) +
1

2
JncNC

exp
int .

(D9)
with Z(J, nc;B) as in Eq (D1). To find the optimal
value for the parameters J and nc we need to maximize
the likelihood. Maximization with respect to J again is
equivalent to matching the predicted correlations to the
experimental ones, Cint(J, nc;B) = Cexp

int . This equation

is represented graphically in Fig 2A in the main text. It
is worth noting that, as in the case with free boundary
conditions, it is possible to solve this equation analyti-
cally. We can define

Ã = A/J, (D10)

~̃hi = ~hi/J, (D11)

both of which are independent of J , and then, after some
algebra, we obtain

(Nin − 1)

J
=

1

2

∑
ij∈I

(Ã−1)ij~̃h
P

i ·~̃h
P

j −
1

2

[∑
l∈B ~πl +

∑
ij∈I(Ã−1)ij~̃h

P

j

]2
∑

ij∈I(Ã−1)ij
+
∑
i∈I

h̃Li +
∑
lm∈B

nlm~sl ·~sm+
Nnc

2
(1−Cexp

int ) (D12)
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where Nin is the number of internal birds. Note that the
right hand side is a function of nc only, so we have an
expression for J(nc;B). Substituting back into Eq (D9)
we get the likelihood as a function of nc only. Maximiza-
tion can be performed numerically, as shown in Fig 2B
in the main text.

Values of J and nc for all flocks are collected in Figs 2
in the main text and in Fig 6. In this figure, we see the
improvement in the prediction of the correlation function
C(r) that comes with fixed boundary conditions.

Appendix E: A global model

Given a flock of birds, so far we have solved the max-
imum entropy model for each individual snapshot inde-
pendently, and then we have averaged the inferred val-
ues of the parameters J and nc over all the snapshots.
This is the most general procedure we can use, consistent
with the dynamical nature of the interaction network.
The inferred values of J and nc fluctuate from snapshot
to snapshot, due to several factors. It is possible that
birds slightly adjust interaction strength and range dur-
ing time, but there are other noisy contributions that
might increase the fluctuations. The flocks we analyzed
are finite groups, ranging from a few hundreds to a few
thousands individuals, and we therefore expect finite size
effects. The algorithmic procedure to reconstruct posi-
tions and velocities of individual birds in the flock is very
efficient but not perfect, and there are fluctuations across
snapshots in the number of reconstructed individuals; see
Refs [14, 17] for details on the 3D reconstructions. Fi-
nally, the log–likelihood can be very flat in the region of
the maximum: in this case even small fluctuations can
cause the value of the maximum to jump from a value
of nc to another one quite different. Averaging nc and
J over the snapshots, we get rid of these fluctuations.
Alternatively, we can assume from the start that, given
a flock, there is a unique value of nc and J through time.
In this case, the log–likelihood of each snapshot is a func-
tion of the same J and nc and we need to optimize the
global likelihood corresponding to all the snapshots, and
not each one independently. In other terms, we first com-
pute the average of the log–likelihood over the snapshots
at J and nc fixed, and then we maximize with respect
to the two parameters. Note that we are inverting the
procedure described in the previous sections, where, on
the contrary, we first maximize each individual snapshot
with respect to J and nc and then we take the average
over all the snapshots of the optimal parameters. The
computation of the average log–likelihood can be easily
done starting from the equations for the single snapshot.
Let us denote, for future convenience, by

φα(J, nc) = − logZ(J, nc;Bα) +
1

2
JncNC

exp
int,α (E1)

the log–likelihood of the snapshot α with parameters J
and nc (see Eq (D9)). Then, the average log–likelihood

for all the snapshots is

Φglobal(J, nc) =
1

Nsnap

∑
α

φα(J, nc) , (E2)

where Nsnap is the number of snapshots available for that
flock. At this point, we need to maximize Φglobal over J
and nc. The maximization with respect to J leads, once
again, to an explicit expression for the optimal J , that
we shall call Jglobal, as a function of nc:

1

Jglobal
=

1

Nsnap

∑
α

(Nα
in − 1)

(Nglobal
in − 1)

1

Jα(nc)
(E3)

where Jα(nc) is the optimal value of J for the snapshot
α, as above, Nα

in is the number of internal individuals

in the snapshot α, and Nglobal
in is the average over snap-

shots. Substituting Jglobal(nc) back in Eq (E2) we get
an expression, which is a function of nc only. The like-
lihood can then be maximized numerically with respect
to nc. The values nc,global and Jglobal obtained in this
way are plotted in Fig 7, where they are compared to
the values inferred with the more general procedure (op-
timizing each snapshot independently and then averag-
ing). There is a very strong correlation with slope close
to one. This represents a strong consistency check on
the inference procedure.
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FIG. 7: Global models of flocking events. (A) Values of
the neighborhood size nc inferred from maximizing the log–
likelihood averaged over snapshots, plotted vs. the mean
values obtained from maximizing log–likelihood in individual
snapshots. Error bars represent the standard deviation over
snapshots for each flock. Black line has a slope 0.78. (B) As
in (A), but for the interaction strength J ; the black line has
slope 0.92.

Appendix F: A model for order propagation

The maximum entropy model with fixed flight direc-
tions on the border gives excellent predictions for two–
point and higher order correlation functions; see Figs 3,
6 and 8. In addition, it allows to infer—up to a calibra-
tion factor—the microscopic interactions in a numerical
model of self–propelled particles. We can conclude that
this model indeed offers a very good statistical descrip-
tion of the flight directions of individuals in a flock. Let
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us then look back at the model, and try to understand
the kind of system that the model describes.

We recall that, in this version of the model, we take
as fixed the flight directions of the individuals on the
border. Therefore, the model does not aim at predict-
ing properties of border individuals, which, as we noted,
may depend on factors other than mutual interactions.
Rather, the model focuses on internal individuals and
how ordering flows through the flock. The state of the

birds on the border generate a ‘field’ (~hi) on internal in-
dividuals, but this field is nonzero only for individuals
interacting directly interacting with birds on the bound-
ary (i.e. when Jij = Jnij 6= 0). For the values of nc
retrieved by the model (nc ∼ 20), this is only a small
shell close to the border: all individuals well inside the
flock, on the contrary, do not experience any direct in-
fluence from the border.
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FIG. 8: Correlations in the interior of the flock. (A) Perpen-
dicular component of the two–point correlation function (as
in Fig 3A) for internal birds only, as a function of distance.
(B) Connected correlation function predicted in the model,
as a function of distance. Inset: correlation length vs. flock
size, for all the flocks that we analyzed.

Still, if the model does describe what happens in a
real flock, it must predict collective coherence: all flight
directions must strongly align and internal individuals
must behave very much in unison with their exterior
companions. Does the model reproduce this behaviour?
If so, what is the mechanism leading to this kind of or-
dering? How do individuals on the border transmit infor-
mation about their flight directions to distant individuals
with whom they do not interact directly?

The formal answer to these questions can be read in
Eq’s (D7) and (D8). The first equation indicates that the
model predicts a well defined perpendicular component
of the flight direction 〈~πi〉 for each internal individual
i. Surprisingly, these perpendicular components agree
remarkably well with the ones measured experimentally
(see Fig 3D in main text), not only for birds close to
boundary, but also well inside the group. The second
equation provides a prediction for the correlation func-
tion. Visualization of these correlations as a function
of distance shows that these predictions also are very
good. We note that, since the longitudinal component
of the flight direction is given by 〈sLi 〉 = 1 − 0.5〈|~πi|2〉,
if we are getting the perpendicular components of the
velocity right we must also be getting the longitudinal

components right. Equations (D7) and (D8) therefore
provide correct predictions of the full flight directions
for all individuals in the flock.

The mechanism through which such ordering occurs,
is the presence of long ranged correlations in the system.
This can be seen more easily rewriting the equations in
the following way:

〈~πi〉 =
∑
j∈I

Ccon
ij
~hPj −

∑
j∈I(A−1)ij∑
kj∈I(A−1)kj

∑
l∈B

~πl (F1)

〈~πi · ~πj〉 = Ccon
ij + 〈~πi〉 · 〈~πj〉 (F2)

Ccon
ij = 2

[
A−1ij −

∑
kn∈I A

−1
ik A

−1
nj∑

kn∈I A
−1
kn

]
(F3)

where we have separated the part of the correlation,
Ccon

ij , which is locally connected (i.e. the covariance).

In Eq (F1) the first term describes a contribution
coming from individuals on the border, while the sec-
ond term is just a renormalization factor to ensure that∑

i∈I〈~πi〉+
∑

l∈B ~πl = 0. We can see from Eq (F1) that
an individual i far from the border can also feel the ef-
fect of birds on the border, provided there is a nonzero
connected correlation Ccon

ij between i and some individ-
ual j close to the border. In other terms, while direct
mutual alignment occurs only between border individu-

als and immediate neighbors (for which ~hi are non zero),
effective alignment occurs also with internal birds that

are indirectly correlated with them (for which Ccon
ij
~hj are

nonzero). If the connected correlations extend over suf-
ficiently long distances, this mechanism ensures propa-
gation of directional information trough the whole flock.

In Fig 8B we show the behaviour of the connected cor-
relation as a function of distance, for one flocking event.
The scale over which this function decays, the correla-
tion length, is of the order of the thickness of the flock
(maximum distance between an internal point and the
border), showing that Ccon indeed is long ranged enough
to propagate ordering well inside the group. In the in-
set, we show that the correlation length grows linearly
with flock size, for all the flocking events we analyzed.
Thus the correlation function is scale free: no matter how
large the flock is, the correlation always extends over the
whole flock.

Appendix G: Correlation functions

In this section we summarize the definitions of all the
correlation functions introduced in the paper and we
comment on their behaviour.

The pairwise correlation. Let us start by recalling
the definition of the pairwise correlation,

〈~si · ~sj〉 = 〈sLi sLj 〉+ 〈~πi · ~πj〉 (G1)
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where, for future convenience, we have separated the lon-
gitudinal part of the correlation from the perpendicular
one. We note that while the sample average of the per-
pendicular flight direction is zero, (1/N)

∑
i ~πi = 0, the

same is not true for the longitudinal direction. Rather,
we have (1/N)

∑
i s

L
i = S, and the longitudinal corre-

lation is dominated by a contribution from the global
polarization S. To better investigate the degree of cor-
relation in the system, it is then convenient to focus on
fluctuations of the individual flight directions with re-
spect to the sample average. To this end, in all the fig-
ures in this paper we consider the following correlations,
where we have subtracted the sample average contribu-
tion:

CP
ij = 〈~πi · ~πj〉 (G2)

CL
ij = 〈(sLi − S)(sLj − S)〉

= 〈(1− S − 1

2
〈π2

i 〉)(1− S −
1

2
〈π2

j )〉 (G3)

Cij = CP
ij + CL

ij . (G4)

The last identity in Eq (G3) is a consequence of the spin
wave approximation.

Connected correlations. In Appendix D we have
described a theory where we get nonzero expectation val-
ues for the flight directions of individual birds, 〈~πi〉 6= 0.
In this case, it may be useful to look at correlation func-
tions which are locally connected, i.e. that describe how
the individual bird flight direction fluctuates with re-
spect to its own average value and not—as in the pre-
viously defined correlations—with respect to the sample
average. To this end, we have introduced in Appendix
F the following connected correlation function

Ccon
ij = 〈~πi · ~πj〉 − 〈~πi〉 · 〈~πj〉 . (G5)

We note that in our case Ccon
ij is purely a theoretical

construct. Indeed, we have applied the maximum en-
tropy approach to each single snapshot independently.
For a single snapshot, the experimental measurement of
the correlation only consists in one configuration (the
velocity field at that instant of time) and we cannot dis-
tinguish between connected and non–connected correla-
tions. The only quantity that can be compared between
theory and experiments is therefore 〈~πi · ~πj〉.
The degree of direct correlation. One important

quantity entering our computation is the degree of direct
correlation,

Cint =
1

N

∑
i

1

nc

∑
j∈ni

c

〈~si · ~sj〉, (G6)

which measures the average correlation between an in-
dividual and its first nc neighbors. This degree of di-
rect correlation is a single scalar quantity, and represents

r2r1
r1

i

j

k

l

FIG. 9: Sketch of the structure of the four point correlation
function. Red circles represent birds. Birds i and j have
mutual distance rij = r1; birds k and l also have mutual
distance rkl = r1. The distance between the mid-point of the
ij pair and the midpoint of the kl pair is r2.

the input observable used by our maximum entropy ap-
proach to build a statistical model for the flight direc-
tions.

The two–point correlation function. To describe
the behaviour of the correlation at different scales, it is
convenient to define the two–point correlation function

C(r) =

∑
ij Cijδ(rij − r)∑
ij δ(rij − r)

, (G7)

where rij = |~ri−~rj| is the distance between bird i and bird
j and the delta function selects pairs of individuals that
have mutual distances in a small interval around r (the
denominator representing the number of pairs in such an
interval). This function measures the average degree of
correlation between individuals separated by a distance
r. Again it is possible to distinguish a longitudinal and
a perpendicular component of these correlations,

C(r) = CL(r) + CP(r), (G8)

describing the contributions relative to, respectively, lon-
gitudinal and perpendicular fluctuations in the flight
directions. Figure 3 in the main text and Fig 8 in
the Appendix show the two–point correlation function
computed from the maximum entropy model with fixed
boundary conditions. The prediction agrees nicely with
the experimental one, on all scales. We stress that the
maximum entropy model uses as an input only Cint,
which measures the average degree of correlation up to
scale nc. With the values of nc retrieved for our events
(nc = 21.2 ± 1.7), this corresponds to a scale of the or-
der of a few meters in r. In contrast, the two–point
correlation function measures the correlation on all pos-
sible scales, from close neighbors (a few meters) to the
whole extension of the flock (hundreds of meters, for
some flocks). Therefore, the good agreement with exper-
iments represents a highly nontrivial prediction of the
model. From Eq (G7), the correlation function takes
into account the contribution coming from all pairs of
individuals, independent of whether they reside on the
border or in the bulk of the flock. Yet, when adopting
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fixed flight directions on the border of the flock, the con-
tribution coming from birds on the border is by construc-
tion identical in the predicted and observed correlation
functions. To test more explicitly whether the model
provides good predictions for the correlations of inter-
nal individuals, we can consider an internal correlation
function, defined as in Eq (G7), but where we only count
contributions from individuals inside the flock (i, j ∈ I);
the result is in Fig 8A. Again, the prediction of the model
is nicely consistent with the experimental correlation.

The four–point correlation function. We can de-
fine correlation functions not only between pairs of indi-
viduals, but for more complicated arrangements of birds.
For example, let us consider a pair of birds i, j separated
by a distance r1, and measure their mutual alignment.
We might want to compare this degree of alignment to
the one that another pair of birds k, l, also separated
from one another by a distance r1, that are located in
another position in the flock. We can then define the

following four–point correlation

C4(r1; r2) =

∑
ijkl〈(~πi · ~πj)(~πi · ~πj)〉∆ijkl∑

ijkl ∆ijkl
, (G9)

∆ijkl = δ(rij − r1)δ(rkl − r1)δ(rij−kl − r2)

(G10)

where rij−kl indicates the distance between the mid-
points of the pairs ij and pair kl; see Fig 9. We can
plot C4(r1; r2) as a function of the two distances r1 and
r2. For example, in Fig 3C in the main text, it is shown
for a fixed value of r1 as a function of r2. We also note
that, in the spin wave approximation, the longitudinal
correlation CL is nothing else than a particular case of
the four–point correlation,

CL(r) = 1− C4(0; r)− S2. (G11)
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