
The Algorithmic Analysis of Hybrid Systems�

R. Alury C. Courcoubetisz N. Halbwachsx T.A. Henzinger{ P.-H. Hox

X. Nicollinz A. Oliveroz J. Sifakisz S. Yovinez

Abstract

We present a general framework for the formal speci�cation and algorithmic analysis of hybrid

systems. A hybrid system consists of a discrete program with an analog environment. We model

hybrid systems as �nite automata equipped with variables that evolve continuously with time

according to dynamical laws. For veri�cation purposes, we restrict ourselves to linear hybrid

systems, where all variables follow piecewise-linear trajectories. We provide decidability and

undecidability results for classes of linear hybrid systems, and we show that standard program-

analysis techniques can be adapted to linear hybrid systems. In particular, we consider symbolic

model-checking and minimization procedures that are based on the reachability analysis of an

in�nite state space. The procedures iteratively compute state sets that are de�nable as unions

of convex polyhedra in multidimensional real space. We also present approximation techniques

for dealing with systems for which the iterative procedures do not converge.
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1 Introduction

A hybrid system consists of a discrete program with an analog environment. We assume that a run

of a hybrid system is a sequence of steps. Within each step the system state evolves continuously

according to a dynamical law until a transition occurs. Transitions are instantaneous state changes

that separate continuous state evolutions.

We model a hybrid system as a �nite automaton that is equipped with a set of variables. The

control locations of the automaton are labeled with evolution laws. At a location the values of

the variables change continuously with time according to the associated law. The transitions of

the automaton are labeled with guarded sets of assignments. A transition is enabled when the

associated guard is true, and its execution modi�es the values of the variables according to the

assignments. Each location is also labeled with an invariant condition that must hold when the

control resides at the location. This model for hybrid systems is inspired by the phase transition

systems of [MMP92, NSY93], and can be viewed as a generalization of timed safety automata [AD94,

HNSY94].

The purpose of this paper is to demonstrate that standard program-analysis techniques can

be adapted to hybrid systems. For veri�cation purposes we restrict ourselves to linear hybrid

systems. In a linear hybrid system, for each variable the rate of change is constant|though this

constant may vary from location to location|and the terms involved in the invariants, guards, and

assignments are required to be linear. An interesting special case of a linear hybrid system is a

timed automaton [AD94]. In a timed automaton each continuously changing variable is an accurate

clock whose rate of change with time is always 1. Furthermore, in a timed automaton all terms

involved in assignments are constants, and all invariants and guards only involve comparisons of

clock values with constants. Even though the reachability problem for linear hybrid systems is

undecidable, it can be solved for timed automata. In this paper, we provide new decidability and

undecidability results for classes of linear hybrid systems, and we show that some algorithms for

the analysis of timed automata can be extended to linear hybrid systems to obtain semidecision

procedures for various veri�cation problems.

In particular, we consider the symbolic model-checking method for timed automata presented

in [HNSY94], and the minimization procedure for timed automata presented in [ACD+92]. Both

methods perform a reachability analysis over an in�nite state space. The procedures compute state

sets by iterative approximation such that each intermediate result is de�nable by a linear formula;

that is, each computed state set is a �nite union of convex polyhedra in multidimensional real

space. The termination of the procedures, however, is not guaranteed for linear hybrid systems.

To cope with this problem, approximate analysis techniques are used to enforce the convergence of

iterations by computing upper approximations of state sets. Approximate techniques yield either

necessary or su�cient veri�cation conditions.

The paper is essentially a synthesis of the results presented in [ACHH93, NOSY93, HPR94].

Section 2 presents a general model for hybrid systems. Section 3 de�nes linear hybrid systems,

and presents decidability and undecidability results for the reachability problem of subclasses of

linear hybrid systems. The veri�cation methods are presented in Section 4. Some paradigmatic

examples are speci�ed and veri�ed to illustrate the application of our results. These examples are

analyzed using the Kronos tool [NSY92, NOSY93] (available from Grenoble) and the HyTech

tool [AHH93, HH94] (available from Cornell), two symbolic model checkers for timed and hybrid

systems.
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2 A Model for Hybrid Systems

We specify hybrid systems by graphs whose edges represent discrete transitions and whose vertices

represent continuous activities.

A hybrid system H = (Loc;Var ;Lab;Edg; Act; Inv) consists of six components:

� A �nite set Loc of vertices called locations.

� A �nite set Var of real-valued variables. A valuation � for the variables is a function that

assigns a real-value �(x) 2 R to each variable x 2 Var . We write V for the set of valuations.

A state is a pair (`; �) consisting of a location ` 2 Loc and a valuation � 2 V . We write � for

the set of states.

� A �nite set Lab of synchronization labels that contains the stutter label � 2 Lab.

� A �nite set Edg of edges called transitions. Each transition e = (`; a; �; `0) consists of a source

location ` 2 Loc, a target location `0 2 Loc, a synchronization label a 2 Lab, and a transition

relation � � V 2. We require that for each location ` 2 Loc, there is a set Con � Var of

controlled variables and a stutter transition of the form (`; �; IdCon ; `), where (�; �
0) 2 IdCon

i� for all variables x 2 Var , either x 62 Con or �(x) = �0(x).

The transition e is enabled in a state (`; �) if for some valuation �0 2 V , (�; �0) 2 �. The

state (`0; �0), then, is a transition successor of the state (`; �).

� A labeling function Act that assigns to each location ` 2 Loc a set of activities. Each activity

is a function from the nonnegative reals R�0 to V . We require that the activities of each

location are time-invariant : for all locations ` 2 Loc, activities f 2 Act(`), and nonnegative

reals t 2 R�0, also (f + t) 2 Act(`), where (f + t)(t0) = f(t+ t0) for all t0 2 R�0.

For all locations ` 2 Loc, activities f 2 Act(`), and variables x 2 Var , we write fx the

function from R�0 to R such that fx(t) = f(t)(x).

� A labeling function Inv that assigns to each location ` 2 Loc an invariant Inv(`) � V .

The hybrid system H is time-deterministic if for every location ` 2 Loc and every valuation

� 2 V , there is at most one activity f 2 Act(`) with f(0) = �. The activity f , then, is denoted

by '`[�].

The runs of a hybrid system

At any time instant, the state of a hybrid system is given by a control location and values for all

variables. The state can change in two ways:

� By a discrete and instantaneous transition that changes both the control location and the

values of the variables according to the transition relation;

� By a time delay that changes only the values of the variables according to the activities of

the current location.

The system may stay at a location only if the location invariant is true; that is, some discrete

transition must be taken before the invariant becomes false.
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A run of the hybrid system H , then, is a �nite or in�nite sequence

� : �0 7!
t0

f0
�1 7!

t1

f1
�2 7!

t2

f2
� � �

of states �i = (`i; �i) 2 �, nonnegative reals ti 2 R�0, and activities fi 2 Act(`i), such that for all

i � 0,

1. fi(0) = �i,

2. for all 0 � t � ti, fi(t) 2 Inv(`i),

3. the state �i+1 is a transition successor of the state �0
i
= (`i; fi(ti)).

The state �0
i
is called a time successor of the state �i; the state �i+1, a successor of �i. We write

[H ] for the set of runs of the hybrid system H .

Notice that if we require all activities to be smooth functions, then the run � can be described by

a piecewise smooth function whose values at the points of higher-order discontinuity are sequences of

discrete state changes. Also notice that for time-deterministic systems, we can omit the subscripts

fi from the next relation 7!.

The run � diverges if � is in�nite and the in�nite sum
P

i�0 ti diverges. The hybrid system H

is nonzeno if every �nite run of H is a pre�x of some divergent run of H . Nonzeno systems can be

executed [AH94].

Hybrid systems as transition systems

With the hybrid system H , we associate the labeled transition system TH = (�;Lab [ R�0;!),

where the step relation ! is the union of the transition-step relations !a, for a 2 Lab,

(`; a; �; `0) 2 Edg (�; �0) 2 � �; �0 2 Inv(`)

(`; �)!a (`0; �0)

and the time-step relations !t, for t 2 R�0,

f 2 Act(`) f(0) = � 80 � t0 � t: f(t0) 2 Inv(`)

(`; �)!t (`; f(t))

Notice that the stutter transitions ensure that the transition system TH is reexive.

There is a natural correspondence between the runs of the hybrid system H and the paths

through the transition system TH : for all states �; �
0 2 �, where � = (`; �), and for all t 2 R�0,

9f 2 Act(`); � 7!t

f
�0 i� 9�00 2 �; a 2 Lab: � !t �00 !a �0:

It follows that for every hybrid system, the set of runs is closed under pre�xes, su�xes, stuttering,

and fusion [HNSY94].

For time-deterministic hybrid systems, the rule for the time-step relation can be simpli�ed.

Time can progress by the amount t 2 R�0 from the state (`; �) if this is permitted by the invariant

of location `; that is,

tcp
`
[�](t) i� 80 � t0 � t: '`[�](t

0) 2 Inv(`):

Now we can rewrite the time-step rule for time-deterministic systems as

tcp
`
[�](t)

(`; �)!t (`; '`[�](t))

3



Example: thermostat

The temperature of a room is controlled through a thermostat, which continuously senses the

temperature and turns a heater on and o�. The temperature is governed by di�erential equations.

When the heater is o�, the temperature, denoted by the variable x, decreases according to the

exponential function x(t) = �e�Kt, where t is the time, � is the initial temperature, and K is a

constant determined by the room; when the heater is on, the temperature follows the function

x(t) = �e�Kt + h(1 � e�Kt), where h is a constant that depends on the power of the heater. We

wish to keep the temperature between m andM degrees and turn the heater on and o� accordingly.

The resulting time-deterministic hybrid system is shown in Figure 1. The system has two

locations: in location `0, the heater is turned o�; in location `1, the heater is on. The transition

relations are speci�ed by guarded commands; the activities, by di�erential equations; and the

location invariants, by logical formulas.

_x = �Kx

x = m

x =M

x =M

`1`0

_x = K(h� x)

x �Mx � m

Figure 1: Thermostat

The parallel composition of hybrid systems

Let H1 = (Loc1;Var;Lab1;Edg1; Act1; Inv1) and H2 = (Loc2;Var ;Lab2;Edg2; Act2; Inv2) be two

hybrid systems over a common set Var of variables. The two hybrid systems synchronize on

the common set Lab1 \ Lab2 of synchronization labels; that is, whenever H1 performs a discrete

transition with the synchronization label a 2 Lab1 \ Lab2, then so does H2.

The product H1 �H2 is the hybrid system (Loc1 � Loc2;Var ;Lab1 [ Lab2;Edg; Act; Inv) such

that

� ((`1; `2); a; �; (`
0
1; `

0
2)) 2 Edg i�

(1) (`1; a1; �1; `
0
1) 2 Edg1 and (`2; a2; �2; `

0
2) 2 Edg2,

(2) either a1 = a2 = a, or a1 62 Lab2 and a2 = � , or a1 = � and a2 62 Lab1,

(3) � = �1 \ �2;

� Act(`1; `2) = Act1(`1) \ Act2(`2);

� Inv(`1; `2) = Inv1(`1) \ Inv2(`2).

It follows that all runs of the product system are runs of both component systems:

[H1 �H2]Loc1 � [H1] and [H1 �H2]Loc2 � [H2]

where [H1 �H2]Loci is the projection of [H1 �H2] on Loci.

Notice also that the product of two time-deterministic hybrid systems is again time-deterministic.
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3 Linear Hybrid Systems

A linear term over the set Var of variables is a linear combination of the variables in Var with

integer coe�cients. A linear formula over Var is a boolean combination of inequalities between

linear terms over Var .

The time-deterministic hybrid system H = (Loc;Var ;Lab;Edg; Act; Inv) is linear if its activ-

ities, invariants, and transition relations can be de�ned by linear expressions over the set Var of

variables:

1. For all locations ` 2 Loc, the activities Act(`) are de�ned by a set of di�erential equations of

the form _x = kx, one for each variable x 2 Var , where kx 2 Z is an integer constant: for all

valuations � 2 V , variables x 2 Var , and nonnegative reals t 2 R�0,

'x
`
[�](t) = �(x) + kx �t:

We write Act(`; x) = kx to refer to the rate of the variable x at location `.

2. For all locations ` 2 Loc, the invariant Inv(`) is de�ned by a linear formula  over Var :

� 2 Inv(`) i� �( ):

3. For all transitions e 2 Edg , the transition relation � is de�ned by a guarded set of nondeter-

ministic assignments

 ) fx := [�x; �x] j x 2 Varg;

where the guard  is a linear formula and for each variable x 2 Var , both interval boundaries

�x and �x are linear terms:

(�; � 0) 2 � i� �( ) ^ 8x 2 Var : �(�x) � �0(x) � �(�x):

If �x = �x, we write �(e; x) = �x to refer to the updated value of the variable x after the

transition e.

Notice that every run of a linear hybrid system can be described by a piecewise linear function

whose values at the points of �rst-order discontinuity are �nite sequences of discrete state changes.

Special cases of linear hybrid systems

Various special cases of linear hybrid systems are of particular interest:

� If Act(`; x) = 0 for each location ` 2 Loc, then x is a discrete variable. Thus, a discrete

variable changes only when the control location changes. A discrete system is a linear hybrid

system all of whose variables are discrete.

� A discrete variable x is a proposition if �(e; x) 2 f0; 1g for each transition e 2 Edg . A

�nite-state system is a linear hybrid system all of whose variables are propositions.

� If Act(`; x) = 1 for each location ` and �(e; x) 2 f0; xg for each transition e, then x is a clock.

Thus, (1) the value of a clock increases uniformly with time, and (2) a discrete transition

either resets a clock to 0, or leaves it unchanged. A timed automaton [AD94] is a linear

hybrid system all of whose variables are propositions or clocks, and the linear expressions are

boolean combinations of inequalities of the form x#c or x � y#c where c is a nonnegative

integer and # 2 f<;�;=; >;�g.
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� If there is a nonzero integer constant k 2 Z such that Act(`; x) = k for each location ` and

�(e; x) 2 f0; xg for each transition e, then x is a skewed clock. Thus, a skewed clock is similar

to a clock except that it changes with time at some �xed rate di�erent from 1. A multirate

timed system is a linear hybrid system all of whose variables are propositions and skewed

clocks. An n-rate timed system is a multirate timed system whose skewed clocks proceed at

n di�erent rates.

� If Act(`; x) 2 f0; 1g for each location ` and �(e; x) 2 f0; xg for each transition e, then x is an

integrator. Thus, an integrator is a clock that can be stopped and restarted; it is typically

used to measure accumulated durations. An integrator system is a linear hybrid system all

of whose variables are propositions and integrators.

� A discrete variable x is a parameter if �(e; x) = x for each transition e 2 Edg . Thus, a

parameter is a symbolic constant. For each of the subclasses of linear hybrid systems listed

above, we obtain parameterized versions by admitting parameters.

Notice that linear hybrid systems, and all of the subclasses of linear hybrid systems listed above,

are closed under parallel composition.

3.1 Examples of Linear Hybrid Systems

A water-level monitor

The water level in a tank is controlled through a monitor, which continuously senses the water level

and turns a pump on and o�. The water level changes as a piecewise-linear function over time.

When the pump is o�, the water level, denoted by the variable y, falls by 2 inches per second; when

the pump is on, the water level rises by 1 inch per second. Suppose that initially the water level

is 1 inch and the pump is turned on. We wish to keep the water level between 1 and 12 inches.

But from the time that the monitor signals to change the status of the pump to the time that the

change becomes e�ective, there is a delay of 2 seconds. Thus the monitor must signal to turn the

pump on before the water level falls to 1 inch, and it must signal to turn the pump o� before the

water level reaches 12 inches.

The linear hybrid system of Figure 2 describes a water-level monitor that signals whenever the

water level passes 5 and 10 inches, respectively. The system has four locations: in locations 0

and 1, the pump is turned on; in locations 2 and 3, the pump is o�. The clock x is used to specify

the delays: whenever the control is in location 1 or 3, the signal to switch the pump o� or on,

respectively, was sent x seconds ago. In the next section, we will prove that the monitor indeed

keeps the water level between 1 and 12 inches.

A mutual-exclusion protocol

This example describes a parameterized multirate timed system. We present a timing-based algo-

rithm that implements mutual exclusion for a distributed system with skewed clocks. Consider an

asynchronous shared-memory system that consists of two processes P1 and P2 with atomic read

and write operations. Each process has a critical section and at each time instant, at most one of

the two processes is allowed to be in its critical section. Mutual exclusion is ensured by a version

of Fischer's protocol [Lam87], which we describe �rst in pseudocode. For each process Pi, where

i = 1; 2:
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y = 10

x := 0

y = 1

x = 2 x = 2

y = 5

x := 0

_x = 1

0 1

3 2

_x = 1 _x = 1

_y = 1_y = 1

y � 10 x � 2

_x = 1

_y = �2

x � 2

_y = �2

y � 5

Figure 2: Water-level monitor

repeat

repeat

await k = 0

k := i

delay b

until k = i

Critical section

k := 0

forever

The two processes P1 and P2 share a variable k and process Pi is allowed to be in its critical

section i� k = i. Each process has a private clock. The instruction delay b delays a process for

at least b time units as measured by the process's local clock. Furthermore, each process takes

at most a time units, as measured by the process's clock, for a single write access to the shared

memory (i.e., for the assignment k := i). The values of a and b are the only information we have

about the timing behavior of instructions. Clearly, the protocol ensures mutual exclusion only for

certain values of a and b. If both private processor clocks proceed at precisely the same rate, then

mutual exclusion is guaranteed i� a < b.

To make the example more interesting, we assume that the two private clocks of the processes P1
and P2 proceed at di�erent rates, namely, the local clock of P2 is 1:1 times faster than the clock

of P1. The resulting system can be modeled by the product of the two hybrid systems presented

in Figure 3.

Each of the two graphs models one process, with the two critical sections being represented by

the locations 4 and D. The private clocks of the processes P1 and P2 determine the rate of change

of the two skewed-clock variables x and y, respectively.

A leaking gas burner

Now we consider an integrator system. In [CHR91], the duration calculus is used to prove that

a gas burner does not leak excessively. It is assumed that (1) any leakage can be detected and
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1 2 3 4

_x = 1 _x = 1 _x = 1k = 0

x := 0 x < a x := 0

k := 1

x > b^ k 6= 1

k = 0

A B C D

y := 0

y > b^ k 6= 2

k := 2

y < a

k := 0

k := 0

k = 1

k = 2

^

x > b
^

_y = 1:1_y = 1:1

_x = 1

_y = 1:1 _y = 1:1

y > b

y := 0

Figure 3: Mutual-exclusion protocol

stopped within 1 second and (2) the gas burner will not leak for 30 seconds after a leakage has

been stopped. We wish to prove that the accumulated time of leakage is at most one twentieth

of the time in any interval of at least 60 seconds. The system is modeled by the hybrid system

of Figure 4. The system has two locations: in location 1, the gas burner leaks; location 2 is the

nonleaking location. The integrator z records the cumulative leakage time; that is, the accumulated

amount of time that the system has spent in location 1. The clock x records the time the system

has spent in the current location; it is used to specify the properties (1) and (2). The clock y

records the total elapsed time. In the next section, we will prove that y � 60 ) 20z � y is an

invariant of the system.

1 2x := 0

x � 30

x := 0

x = 0

z = 0

y = 0

_x = 1

_y = 1
_z = 1

x � 1

_x = 1
_y = 1

_z = 0

Figure 4: Leaking gas burner
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A temperature control system

This example appears in [JLHM91]. The system controls the coolant temperature in a reactor

tank by moving two independent control rods. The goal is to maintain the coolant between the

temperatures �m and �M . When the temperature reaches its maximum value �M , the tank must

be refrigerated with one of the rods. The temperature rises at a rate vr and decreases at rates v1
and v2 depending on which rod is being used. A rod can be moved again only if T time units have

elapsed since the end of its previous movement. If the temperature of the coolant cannot decrease

because there is no available rod, a complete shutdown is required. Figure 5 shows the hybrid

system of this example: variable � measures the temperature, and the values of clocks x1 and x2
represent the times elapsed since the last use of rod 1 and rod 2, respectively.

� = �M ^ x1 � T

x1 := 0

� = �m

shutdown

x2 � Tx2 := 0

� = �m � = �M ^ � = �M ^ x1 < T ^ x2 < T

x1 = T

x2 = T

1

_x2 = 1

� � �m

0

32
_� = �v2
_x1 = 1

_x2 = 1

� � �m

_� = vr
_x1 = 1

_x2 = 1

� � �M

_� = �v1
_x1 = 1

Figure 5: Temperature control system

A game of billiards

Consider a billiard table of dimensions l and h, with a grey ball and a white ball (Figure 6).

Initially, the balls are placed at positions bg = (xg; yg) and bw = (xw; yw). The grey ball is

knocked and starts moving with constant velocity v. If the ball reaches a vertical side then it

rebounds, i.e., the sign of the horizontal velocity component vx changes. The same occurs with the

vertical velocity component vy when the ball reaches a horizontal side. The combination of signs

of velocity components gives four di�erent directions of movement.

The hybrid system shown in Figure 7 describes the movement of the grey ball for the bil-

liards game. Each possible combination of directions is represented by a location. The rebounds

correspond to the execution of transitions between locations.
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v
vy

vx

xg
xw l x

h

yw

yg

y

Figure 6: Billiards game

x = l
1

_x = vx

x � l ^ y � h

2
_x = �vx

_y = vy

x � 0 ^ y � h

_y = vy

y = 0 y = h y = h y = 0

3

_y = �vy

_x = vx

4

_x = �vx
x = 0

x � l ^ y � 0 x � 0 ^ y � 0

_y = �vy

x = xg

y = yg

x = l

x = 0

Figure 7: Movement of the grey ball
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3.2 The Reachability Problem for Linear Hybrid Systems

Let � and �0 be two states of a hybrid system H . The state �0 is reachable from the state �, written

� 7!� �0, if there is a run of H that starts in � and ends in �0. The reachability question asks, then,

if � 7!� �0 for two given states � and �0 of a hybrid system H .

The reachability problem is central to the veri�cation of hybrid systems. In particular, the

veri�cation of invariance properties is equivalent to the reachability question: a set R � � of states

is an invariant of the hybrid system H i� no state in ��R is reachable from an initial state of H .

A decidability result

A linear hybrid system is simple if all linear atoms in location invariants and transition guards are

of the form x � k or k � x, for a variable x 2 Var and an integer constant k 2 Z. In particular, for

multirate timed systems the simplicity condition prohibits the comparison of skewed clocks with

di�erent rates.

Theorem 3.1 The reachability problem is decidable for simple multirate timed systems.

Proof. Let H be a simple multirate timed system. We translate H into a timed automa-

ton sc(H): (1) adjust the rates of all skewed clocks to 1, and (2) replace all occurrences of each

skewed clock x in location invariants and transition guards with kx � x. Given a valuation � of H ,

let the valuation sc(�) be such that sc(�)(x) = kx � �(x) for all skewed clocks x and sc(�)(p) = �(p)

for all propositions p; moreover, sc(`; �) = (`; sc(�)). It is not di�cult to check that there is a run

of H from � to �0 i� there is a run of sc(H) from sc(�) to sc(�0). The reachability problem for

timed automata is solved in [ACD93].

Two undecidability results

Theorem 3.2 The reachability problem is undecidable for 2-rate timed systems.

Proof. The theorem follows from the undecidability of the halting problem for nondeterministic

2-counter machines. Given any two distinct clock rates, a 2-rate timed system can encode the

computations of the given 2-counter machine M . For the 2-rate timed system H , we use \accurate"

clocks of rate 1 and skewed clocks of rate 2. We use an accurate clock y to mark intervals of

length 1: the clock y is zero initially, and is reset whenever it reaches 1. The i-th con�guration of

the machine M is encoded by the state of H at time i. The location of H encodes the program

counter of M , and the values of two accurate clocks x1 and x2 encode the counter values: the

counter value n is encoded by the clock value 1=2n.

Encoding the program counter, setting up the initial con�guration, and testing a counter for

being 0, is straightforward. Hence it remains to be shown how to update the counter values.

Suppose at time i the value of an accurate clock x is 1=2n, that is, suppose that the clock x is

reset to 0 at time i� 1=2n. Suppose the value of the counter encoded by x stays unchanged. Then

simply reset x to 0 when its value reaches 1 (that is, at time (i + 1 � 1=2n)); the value of x at

time i+ 1 will then be 1=2n. To increment the counter represented by x, reset an accurate clock z

when the value of x reaches 1, then nondeterministically reset both x and a skewed clock z0 in the

interval (i+ 1� 1=2n; i+ 1) and test z = z0 at time i+ 1. The equality test ensures that the value

of the skewed clock z0 is 1=2n at time i + 1, and hence, the value of x is 1=2n+1 at time i + 1.

To decrement the counter represented by x, nondeterministically reset an accurate clock z in the

interval (i� 1; i� 1=2n), reset a skewed clock z0 simultaneously with x at time i � 1=2n, and test

11



the condition z = z0 at time i. This ensures that the value of z at time i is 1=2n�1. Then resetting

the clock x when the value of z reaches 1 ensures that the value of x is 1=2n�1 at time i+ 1.

Thus, the runs of H encode the runs of M , and the halting problem for M is reduced to a

reachability problem for H .

Theorem 3.3 The reachability problem is undecidable for simple integrator systems.

Proof. This is proved in [�Cer92].

4 The Veri�cation of Linear Hybrid Systems

We present a methodology for analyzing linear hybrid systems that is based on predicate transform-

ers for computing the step predecessors and the step successors of a given set of states. Throughout

this section, let H = (Loc;Var ;Lab;Edg; Act; Inv) be a linear hybrid system.

4.1 Forward Analysis

Given a location ` 2 Loc and a set of valuations P � V , the forward time closure hP i
%

`
of P at `

is the set of valuations that are reachable from some valuation � 2 P by letting time progress:

�0 2 hP i
%

`
i� 9� 2 V; t 2 R�0: � 2 P ^ tcp

`
[�](t) ^ �0 = '`[�](t):

Thus, for all valuations �0 2 hP i
%

`
, there exist a valuation � 2 P and a nonnegative real t 2 R�0

such that (`; �)!t (`; � 0).

Given a transition e = (`; a; �; `0) and a set of valuations P � V , the postcondition post
e
[P ]

of P with respect to e is the set of valuations that are reachable from some valuation � 2 P by

executing the transition e:

�0 2 post
e
[P ] i� 9� 2 V: � 2 P ^ (�; �0) 2 �:

Thus, for all valuations �0 2 post
e
[P ], there exists a valuation � 2 P such that (`; �)!a (`0; �0).

A set of states is called a region. Given a set P � V of valuations, by (`; P ) we denote the region

f(`; �) j � 2 Pg; we write (`; �) 2 (`; P ) i� � 2 P . The forward time closure and the postcondition

can be naturally extended to regions: for R =
S
`2Loc(`; R`),

hRi% =
[

`2Loc

(`; hR`i
%

`
)

post[R] =
[

e=(`;`0)2Edg

(`0; post
e
[R`])

A symbolic run of the linear hybrid system H is a �nite or in�nite sequence

% : (`0; P0) (`1; P1) : : :(`i; Pi) : : :

of regions such that for all i � 0, there exists a transition ei from `i to `i+1 and

Pi+1 = post
ei
[hPii

%

`i
];

that is, the region (`i+1; Pi+1) is the set of states that are reachable from a state (`0; �0) 2 (`0; P0)

after executing the sequence e0; : : : ; ei of transitions. There is a natural correspondence between
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the runs and the symbolic runs of the linear hybrid system H . The symbolic run % represents the

set of all runs of the form

(`0; �0) 7!
t0 (`1; �1) 7!

t1 � � �

such that (`i; �i) 2 (`i; Pi) for all i � 0. Besides, every run of H is represented by some symbolic

run of H .

Given a region I � �, the reachable region (I 7!�) � � of I is the set of all states that are

reachable from states in I :

� 2 (I 7!�) i� 9�0 2 I: �0 7!� �:

Notice that I � (I 7!�).

The following proposition suggests a method for computing the reachable region (I 7!�) of I .

Proposition 4.1 Let I =
S
`2Loc(`; I`) be a region of the linear hybrid system H. The reachable

region (I 7!�) =
S
`2Loc(`; R`) is the least �xpoint of the equation

X = hI [ post[X ]i%

or, equivalently, for all locations ` 2 Loc, the set R` of valuations is the least �xpoint of the set of

equations

X` = hI` [
[

e=(`0;`)2Edg

post
e
[X`0 ]i

%

`
:

Let  be a linear formula over Var . By [[ ]] we denote the set of valuations that satisfy  . A

set P � V of valuations is linear if P is de�nable by a linear formula; that is, P = [[ ]] for some

linear formula  . If Var contains n variables, then a linear set of valuations can be thought of as

a union of polyhedra in n-dimensional space.

Lemma 4.1 For all linear hybrid systems H, if P � V is a linear set of valuations, then for all

locations ` 2 Loc and transitions e 2 Edg, both hP i
%

`
and post

e
[P ] are linear sets of valuations.

Given a linear formula  , we write h i
%

`
and post

e
[ ] for the linear formulas that de�ne the

sets of valuations h[[ ]]i
%

`
and poste[[[ ]]], respectively.

Let pc 62 Var be a control variable that ranges over the set Loc of locations and let R =S
`2Loc(`; R`) be a region. The region R is linear if for every location ` 2 Loc, the set R` of

valuations is linear. If the sets R` are de�ned by the linear formulas  `, then the region R is

de�ned by the linear formula

 =
_

`2Loc

(pc = ` ^  `);

that is, [[ ]] = R. Hence, by Lemma 4.1, for all linear hybrid systems, if R is a linear region, then

so are both hRi% and post[R].

Using Proposition 4.1, we compute the reachable region (I 7!
�) of a region I by successive

approximation. Lemma 4.1 ensures that all regions computed in the process are linear. Since

the reachability problem for linear hybrid systems is undecidable, the successive-approximation

procedure does not terminate in general. The procedure does terminate for simple multirate timed

systems (Theorem 3.1) and for the following example.
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Example: the leaking gas burner

Let I be the set of initial states de�ned by the linear formula

 I = (pc = 1 ^ x = y = z = 0):

The set (I 7!�) of reachable states is characterized by the least �xpoint of the two equations

 1 = hx = y = z = 0 _ post(2;1)[ 2]i
%

1

 2 = hfalse _ post(1;2)[ 1]i
%

2

which can be iteratively computed as

 1;i =  1;i�1 _ hpost(2;1)[ 2;i�1]i
%

1

 2;i =  2;i�1 _ hpost(1;2)[ 1;i�1]i
%

2

where  1;0 = hx = y = z = 0i
%

1 = (x � 1 ^ y = x = z) and  2;0 = false. For i = 1, we have

 1;1 =  1;0 _ hpost(2;1)[ 2;0]i
%

1

=  1;0

 2;1 =  2;0 _ hpost(1;2)[ 1;1]i
%

2

= hpost(1;2)[x � 1 ^ y = x = z = 0]i
%

2

= h(x = 0 ^ y � 1 ^ z = y)i
%

2

= (z � 1 ^ y = z + x)

Now, it is easy to show by induction that for all i � 2,

 1;i =  1;i�1 _ x � 1 ^ 0 � z � x � i ^ 30i+ z � y

and

 2;i =  2;i�1 _ y � i+ 1 ^ 30i+ x+ z � y

Hence, the least solution of the equations above is the linear formula

 R = (pc = 1 ^  1) _ (pc = 2 ^  2)

where

 1 = x � 1 ^ x = y = z _ 9i � 1: (x � 1 ^ 0 � z � x � i ^ 30i+ z � y)

= (x � 1 ^ x = y = z) _ (x � 1 ^ x � z ^ y + 30x � 31z)

 2 = z � 1 ^ y = x+ z ^ x � 0 _ 9i � 1: (z � i+ 1 ^ 30i+ x+ z � y)

= (z � 1 ^ y = x + z ^ x � 0) _ y � x+ 31z � 30

This characterization of the reachable states can be used to verify invariance properties of the gas

burner system ( R is the strongest invariant of the system). For instance, the formula  R implies

the design requirement y � 60 ) 20z � y.
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4.2 Backward Analysis

The forward time closure and the postcondition de�ne the successor of a region R. Dually, we can

compute the predecessor of R.

Given a location ` 2 Loc and a set of valuations P � V , the backward time closure of P at

` is the set of valuations from which it is possible to reach some valuation � 2 P by letting time

progress:

�0 2 hP i
.

`
i� 9� 2 V; t 2 R�0: � = '`[�

0](t) ^ � 2 P ^ tcp
`
[�0](t):

Thus, for all valuations �0 2 hP i
.

`
, there exist a valuation � 2 P and a nonnegative real t 2 R�0

such that (`; �0)!t (`; �).

Given a transition e = (`; a; �; `0) and a set of valuations P � V , the precondition pre
e
[P ] of P

with respect to e is the set of valuations from which it is possible to reach a valuation � 2 P by

executing the transition e:

�0 2 pre
e
[P ] i� 9� 2 V: � 2 P ^ (�0; �) 2 �:

Thus, for all valuations �0 2 pre
e
[P ], there exists a valuation � 2 P such that (`; �0)!a (`0; �).

The backward time closure and the precondition can be naturally extended to regions: for R =S
`2Loc(`; R`),

hRi. =
[

`2Loc

(`; hR`i
.

`
)

pre[R] =
[

e=(`0;`)2Edg

(`0; pre
e
[R`])

Given a region R � �, the initial region (7!� R) � � of R is the set of all states from which a

state in R is reachable:

� 2 (7!� R) i� 9�0 2 R: � 7!� �0:

Notice that R � (7!� R).

The following proposition suggests a method for computing the initial region (7!� R) of R.

Proposition 4.2 Let R =
S
`2Loc(`; R`) be a region of the linear hybrid system H. The initial

region I =
S
`2Loc(`; I`) is the least �xpoint of the equation

X = hR [ pre[X ]i.

or, equivalently, for all locations ` 2 Loc, the set I` of valuations is the least �xpoint of the set

X` = hR` [
[

e=(`;`0)2Edg

pre
e
[X`0]i

.

`

of equations.

Lemma 4.2 For all linear hybrid systems H, if P � V is a linear set of valuations, then for all

locations ` 2 Loc and transitions e 2 Edg, both hP i
.

`
and pre

e
[P ] are linear sets of valuations.

It follows that for all linear hybrid systems, if R is a linear region, then so are both hRi.

and pre[R]. Given a linear formula  , we write h i
.

`
and pree[ ] for the linear formulas that de�ne

the sets of valuations h[[ ]]i
.

`
and pre

e
[[[ ]]], respectively.
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Example: the leaking gas burner

We apply backward analysis to prove that the design requirement y � 60 ) 20z � y is an

invariant of the gas burner system; that is, the region R de�ned by the linear formula

 R = (y � 60 ^ 20z > y)

is not reachable from the set I of initial states de�ned by the linear formula

 I = (pc = 1 ^ x = y = z = 0):

The set ( 7!� R) of states from which it is possible to reach a state in R is characterized by the

least �xpoint of the two equations

 1 = h(y � 60 ^ 20z > y) _ pre(1;2)[ 2]i
.

1

 2 = h(y � 60 ^ 20z > y) _ pre(2;1)[ 1]i
.

2

which can be iteratively computed as

 1;i = hpre(1;2)[ 2;i�1]i
.

1

 2;i = hpre(2;1)[ 1;i�1]i
.

2

where  1;0 = h(y � 60 ^ 20z > y)i
.

1 and  2;0 = h(y � 60 ^ 20z > y)i
.

2 . Then,

 1;0 = (�19 < 20 z � 19 x� y ^ 59 < �x + y ^ x � 1);

 2;0 = (0 < 20 z + x� y ^ 0 < 20 z � y ^ 3 < z);

 1;1 = (�19 < 20 z � y � 19 x ^ 2 < z � x ^ x � 1);

 2;1 = (�19 < 20 z � y ^ 2 < z ^ 11 < 20 z + x� y);

 1;2 = (�8 < 20 z � 19 x� y ^ 1 < z � x ^ x � 1);

 2;2 = (�19 < 20 z � y ^ 2 < z ^ 11 < 20 z + x� y);

 1;3 = (�8 < 20 z � 19 x� y ^ 1 < z � x ^ x � 1);

 2;3 = (�8 < 20 z � y ^ 1 < z ^ 22 < 20 z + x� y);

 1;4 = (3 < 20 z � 19 x� y ^ 0 < z � x ^ x � 1);

 2;4 = (�8 < 20 z � y ^ 1 < z ^ 22 < 20 z + x� y);

 1;5 = (3 < 20 z � 19 x� y ^ 0 < z � x ^ x � 1);

 2;5 = (3 < 20 z � y ^ 0 < z ^ 33 < 20 z + x� y);

 1;6 = (14 < 20 z � 19 x� y ^ �1 < z � x ^ x � 1); and

 2;6 = (3 < 20 z � y ^ 0 < z ^ 33 < 20 z + x� y):

Since  1;7 )  1;6 and  2;7 )  2;6, the solution  is

_
0�i�6

(pc = 1 ^  1;i) _ (pc = 2 ^  2;i);

which contains no initial states; that is,  I ^  = false. It follows that the design requirement is

an invariant.
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4.3 Approximate Analysis

In this section, we briey present an approximate technique for dealing with systems where the

(forward or backward) iterative procedure does not converge. For more details, see [HH94, HPR94].

We will compute upper approximations of the sets

� (I 7!�) of states which are reachable from the initial states I (forward analysis)

� (7!� R) of states from which the region R is reachable (backward analysis)

We focus on forward analysis, backward analysis is similar. Let us come back to the system of

�xpoint equations whose least solution gives, for each location `, the set X` of reachable states at

location `:

X` = hI` [
[

e=(`0;`)2Edg

post
e
[X`0 ]i

%

`

Two problems arise in the practical resolution of such a system:

� Handling disjunctions of systems of linear inequalities; for instance there is no easy way for

deciding if a union of polyhedra is included into another.

� The �xpoint computation may involve in�nite iteration.

An approximate solution to these problems is provided by abstract interpretation techniques [CC77,

CH78].

First, union of polyhedra is approximated by their convex hull, i.e., the least convex polyhedron

containing the operands of the union. Let t denote the convex hull operator:

P t P 0 = f�x+ (1� �)x0 j x 2 P; x0 2 P 0; � 2 [0; 1]g

Fig. 8.a shows an example of convex hull. See [CH78, LeV92] for e�cient algorithms to compute

the convex hull. The system of equations becomes:

X` = hI` t
G

e=(`0;`)2Edg

post
e
[X`0 ]i

%

`

To enforce the convergence of iterations, we apply Cousot's \widening technique" [CC77, CH78].

The idea is to extrapolate the limit of a sequence of polyhedra, in such a way that an upper

approximation of the limit be always reached in a �nite number of iterations. We de�ne a widening

operator, noted r, on polyhedra, such that

� For each pair (P; P 0) of polyhedra, P t P 0 � PrP 0

� For each in�nite increasing sequence (P0; P1; : : : ; Pn; : : :) of polyhedra, the sequence de�ned

by Q0 = P0, Qn+1 = QnrPn+1 is not strictly increasing (i.e., remains constant after a �nite

number of terms).

A widening operator on polyhedra has been de�ned in [CH78, Hal93]. Intuitively, the system of

linear constraints of PrP 0 is made of exactly those constraints of P which are also satis�ed by

P 0. So it is built by removing constraints from P and since we cannot remove in�nitely many

constraints, the �niteness property follows. Fig. 8.b illustrates the widening operation. Now, this

operator is used as follows: Choose, in each loop of the graph of the hybrid system, at least
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f0 � y � x � 4� yg

rf0 � y � x � 6� yg

= f0 � y � xg

f0 � y � x � 4� yg

tfx � 5 ^ y � 3 ^ x + y � 10g

= f0 � y � x � y + 4 ^ x+ y � 10g

Figure 8: Approximation operators

one location, and call them \widening locations" (So, removing these locations would cut each

loop in the graph). Let X
(n)

`
= F (X(n�1)) be the n-th step computation at location `; that is,

F (X(n�1)) = hI` t
F
e=(`0 ;`)2Edg poste[X

(n�1)
`
0 ]i

%

`
. Instead, for each widening location ` and each

step n � 1, compute X
(n)

`
= X

(n�1)
`

rF (X(n�1)). Then, the new iterative computation converges

after a �nite number of steps toward an upper approximation of the least solution of the original

system.

Example: the leaking gas burner

With I de�ned by  I = (pc = 1 ^ x = y = z = 0), we have (I 7!�) = X1 [ X2, with Xi =

limX
(n)
i
; (i = 1; 2) and (choosing location 1 as the only widening location)

X
(n)

1 = X
(n�1)
1 rh(x = y = z = 0) t post(2;1)[X

(n�1)
2 ]i

%

1

X
(n)

2 = hpost(1;2)[X
(n)

1 ]i
%

2

The successive iterations are as follows:

Step 1:

X
(1)
1 = x = y = z ^ 0 � x � 1

X
(1)
2 = y = x+ z ^ 0 � x ^ 0 � z � 1

Step 2:

X
(2)
1 = 31z � 30x+ y ^ x � z ^ 0 � x � 1

X
(2)

2 = x+ z � y ^ 0 � x ^ 0 � z ^ x+ 31z � y + 30

and Step 3 shows the convergence:

X
(3)
1 = X

(2)
1 ; X

(3)
2 = X

(2)
2
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So the �nal results are:

X1 = 0 � x � 1 ^ x � z ^ 31z � y + 30x

X2 = 0 � x ^ 0 � z ^ x+ z � y ^ x+ 31z � y + 30

These results are obtained in 0.2 sec. on SUN 4 Sparc Station. Notice that, in this case, the results

are almost exact, and have been obtained automatically, without the induction step used in x4.1.

Other examples

Water-level monitor. Choosing location 0 as the only widening location, we get (in 0.4 sec.) the

following results:

X0 = 1 � y � 10

X1 = y = x+ 10 ^ 0 � x � 2

X2 = 2x+ y = 16 ^ 4 � 2x � 11

X3 = 2x+ y = 5 ^ 0 � x � 2

We can easily check that Xi implies 1 � y � 12 for 0 � i � 3. So, the water level is kept

between 1 and 2 inches as required.

Fischer's mutual-exclusion protocol. In this example, we can consider delays a and b as sym-

bolic constants, letting the analysis discover su�cient conditions for the algorithm to work.

With two processes, the results (obtained in 0.3 sec.) show that the locations where the

mutual exclusion is violated can only be reached when a � b (resp., 11a � 10b when P2's

local clock runs 1.1 faster than P1's).

4.4 Minimization

We extend the next relation 7! to regions: for all regions R and R0, we write R 7! R0 if some

state �0 2 R0 is a successor of some state � 2 R, that is

R 7! R0 i� 9� 2 R; �0 2 R0: � 7! �0:

We write 7!� for the reexive-transitive closure of 7!.

Let � be a partition of the state space �. A region R 2 � is stable if for all R0 2 �,

R 7! R0 implies 8� 2 R: f�g 7! R0

or, equivalently,

R \ pre[hR0
i. ] 6= ; implies R � pre[hR0

i. ]:

The partition � is a bisimulation if every region R 2 � is stable. The partition � respects the

region RF if for every region R 2 �, either R � RF or R \RF = ;.

If a partition � that respects the region RF is a bisimulation, then it can be used to compute

the initial region ( 7!� RF ): for all regions R 2 �, if R 7!� RF then R � ( 7!� RF ), otherwise

R \ (7!� RF ) = ;. Thus, our objective is to construct the coarsest bisimulation that respects a

given region RF , provided there is a �nite bisimulation that respects RF .
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If we are given, in addition to RF , an initial region I that restricts our interest to the reachable

region (I 7!�), then it is best to use an algorithm that performs a simultaneous reachability and

minimization analysis of transition systems [BFH90, LY92].

The minimization procedure of [BFH90] is given below. Starting from the initial partition

fRF ;�� RF g that respects RF , the procedure selects a region R and checks if R is stable with

respect to the current partition; if not, then R is split into smaller sets. Additional book-keeping is

needed to record which regions are reachable from the initial region I . In the following procedure,

� is the current partition, � � � contains the regions R that have been found reachable from I , and

� � � contains the regions R that have been found stable with respect to �. The function split[�](R)

splits the region R 2 � into subsets that are \more" stable with respect to �:

split[�](R) :=

(
fR0; R� R0

g if 9R00
2 �: R0 = pre[hR00

i. ]\ R ^ R0
� R;

fRg otherwise.

The minimization procedure returns YES i� I 7!� RF .

State-space minimization:

� := fRF ;�� RF g; � := fR j R \ I 6= ;g; � := ;

while � 6= � do

choose R 2 (�� �)

let �0 := split[�](R)

if �0 = fRg then

� := � [ fRg

� := � [ fR0
2 � j R 7! R0

g

else

� := � � fRg

if 9R0 2 �0 such that R0 \ I 6= ; then � := � [ fR0g �

� := � � fR0
2 � j R0

7! Rg

� := (� � fRg)[ �0

�

od

return there is R 2 � such that R � RF .

If the regions RF and I are linear, from Lemma 4.2 it follows that all regions that are constructed

by the minimization procedure are linear. The minimization procedure terminates if the coarsest

bisimulation has only a �nite number of equivalence classes. An alternative minimization procedure

is presented in [LY92], which can also be implemented using the primitives hi. and pre.

Example: the water-level monitor

Let H be the hybrid automaton de�ned in Figure 2. We use the minimization procedure to prove

that the formula 1 � y � 12 is an invariant of H . It follows that the water-level monitor keeps the

water level between 1 and 12 inches.

Let the set I of initial states be so de�ned by the linear formula

 I = (pc = 0 ^ x = 0 ^ y = 1)
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and let the set RF of \bad" states be de�ned by the linear formula

 f = (y < 1 _ y > 12):

The initial partition is �1 = f

 00 = (pc = 0 ^ 1 � y � 12);  01 = (pc = 0 ^ (y < 1 _ y > 12));

 10 = (pc = 1 ^ 1 � y � 12);  11 = (pc = 1 ^ (y < 1 _ y > 12));

 20 = (pc = 2 ^ 1 � y � 12);  21 = (pc = 2 ^ (y < 1 _ y > 12));

 30 = (pc = 3 ^ 1 � y � 12);  31 = (pc = 3 ^ (y < 1 _ y > 12))g:

The bad states are represented by  i1, for i 2 f0; 1; 2; 3g. Since the set I of initial states is contained

in  00, that is  I )  00, let � = f 00g. Considering  =  00 2 �, we �nd that split[�1]( 00) = f

 000 = (pc = 0 ^ 1 � y � 10);

 001 = (pc = 0 ^ 10 < y � 12)g:

Therefore, �2 = f 000;  001;  01;  10;  11;  20;  21;  30;  31g. Now  I )  000, so take � = f 000g

and � = ;. Considering  =  000, we �nd that it is stable with respect to �2. Thus � = �[ fR0 2

� j R 7! R0
g = f 000;  001;  10g and � = f 000g. Since  =  001 is also stable in �2 and is not

reaching any new states not in �, � remains the same and � = f 000;  001g. However, considering

 =  10, we obtain split[�2]( 10) = f

 100 = (pc = 1 ^ 0 � x � 2 ^ 1 � y � 12);

 101 = (pc = 1 ^ x > 2 ^ 1 � y � 12)g:

Now,  100 and  101 together with �2, except for  10, constitute �3. The new � is obtained by

removing fR0
2 � j R0

7! Rg =  000 from the old �. The new � becomes f 000;  001g. Now

 =  000 is stable in �3. Hence � = f 000;  001;  100g and � = f 000;  001g. Since  =  100 is

stable in �3, we have � = f 000;  001;  100;  101;  20g and � = f 000;  001;  100g.  =  101 is also

stable in �3, so � = f 000;  001;  100;  101g and � remains unchanged. Considering  =  20, we

obtain split[�3]( 20) = f

 200 = (pc = 2 ^ 5 � y � 12);

 201 = (pc = 2 ^ 1 � y < 5)g:

Now �4 contains  200 and  201, and thus  100must be reconsidered. It is split into split[�4]( 100) = f

 1000 = (pc = 1 ^ 0 � x � 2 ^ 3 � y � 12 ^ 3 � y � x � 12);

 1001 = (pc = 1 ^ 0 � x � 2 ^ 1 � y < 3 ^ 1 � y � x < 3)g:

Thus �5 contains  1000 and  1001. After �nding that  000,  1000 and  200 all are stable, we �nally

have � = f 000;  001;  1000;  200;  201;  30g and � = f 000;  001;  1000;  200g. So let  =  201. It is

stable, so � = � [ f 200g and � does not change. Then  =  30 is partitioned into f

 300 = (pc = 3 ^ 0 � x � 2 ^ 1 � y � 12);

 301 = (pc = 3 ^ x > 2 ^ 1 � y � 12)g:

 200 has to be considered again. It is stable with respect to the current partition. Then  =  300
is considered and split[�6]( 300) = f

 3000 = (pc = 3 ^ 0 � x � 2 ^ 5 � y � 12 ^ 5 � y + 2x � 14);

 3001 = (pc = 3 ^ 0 � x � 2 ^ 1 � y < 5 ^ 1 � y + 2x < 5)g:
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We must consider  200 again. It turns out that it is still stable. After considering  =  3000, we

have � = f 000;  001;  1000;  200;  201;  3000g and � = � [ f 000g. Now the partition is

�7 = f 000;  001;  01;  1000;  1001;  101;  11;  200;  201;  21;  3000;  3001;  301;  31g:

Since  000 is stable in �7, we have � = � = f 000;  001;  1000;  200;  201;  3000g. Notice that �

contains no bad states from RF , that is  ^  f = false for all  2 �. Therefore, the invariant

property has been veri�ed.

4.5 Model Checking

Previously, we presented three semidecision procedures for the reachability problem of linear hybrid

systems. Now we address the more general problem of whether the given linear hybrid system H

satis�es a requirement that is expressed in the real-time temporal logic TCTL [ACD93].

Timed computation tree logic

Let C be a set of clocks not in Var ; that is, C \Var = ;. A state predicate is a linear formula over

the set Var [ C of variables.

The formulas of TCTL are built from the state predicates by boolean connectives, the two

temporal operators 9U and 8U , and the reset quanti�er for the clocks in C. The formulas of TCTL,

then, are de�ned by the grammar

� ::=  j :� j �1 _ �2 j z: � j �19U�2 j �18U�2

where  is a state predicate and z 2 C. The formula � is closed if all occurrences of a clock z 2 C

are within the scope of a reset quanti�er z:

The closed formulas of TCTL are interpreted over the state space � of the linear hybrid

system H . Intuitively, a state � satis�es the TCTL-formula �19U�2 if there exists a run of H from

� to a state �0 satisfying �2 such that �1_ �2 continuously holds along the run. Dually, the state �

satis�es the TCTL-formula �18U�2 if every divergent run from � leads to a state �0 satisfying �2
such that �1 _ �2 continuously holds along from � to �0. Clocks can be used to express timing

constraints. For instance, the TCTL-formula z: (true9U(� ^ z � 5)) asserts that there is a run on

which � is satis�ed within 5 time units.

We use the standard abbreviations such as 83� for true8U�, 93� for true9U�, 92� for :83:�,

and 82� for :93:�. We also put timing constraints as subscripts on the temporal operators. For

example, the formula z: 93(� ^ z < 5) is abbreviated to 93<5�.

Let � = �0 7!
t0 �1 7!

t1 : : : be a run of the linear hybrid system H , with �i = (`i; �i) for all i � 0.

A position � of � is a pair (i; t) consisting of a nonnegative integer i and a nonnegative real t � ti.

The positions of � are ordered lexicographically; that is, (i; t) � (j; t0) i� i < j, or i = j and t � t0.

For all positions � = (i; t) of �,

� the state �(�) at the position � of � is (`i; '`i [�i](t)), and

� the time ��(�) at the position � of � is t+
P

j<i
tj .

A clock valuation � is a function from C to R�0. For any nonnegative real t 2 R�0, by � + t we

denote the clock valuation �0 such that �0(z) = �(z) + t for all clocks z 2 C. For any clock z 2 C,

by �[z := 0] we denote the valuation �0 such that �0(z) = 0 and �0(z0) = �(z0) for all clocks z0 6= z.

An extended state (�; �) consists of a state � 2 � and a clock valuation �. The extended

state (�; �) satis�es the TCTL-formula �, denoted (�; �) j= �, if
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(�; �) j=  i� (�; �)( );

(�; �) j= :� i� (�; �) 6j= �;

(�; �) j= �1 _ �2 i� (�; �) j= �1 or (�; �) j= �2;

(�; �) j= z: �1 i� (�; �[z := 0]) j= �1;

(�; �) j= �19U�2 i� there is a run � of H with �(0; 0) = �, and a position � of � such that

(1) (�(�); �+ ��(�)) j= �2, and (2) for all positions �0 � � of �, (�(�0); �+ ��(�
0)) j= �1 _ �2;

(�; �) j= �18U�2 i� for all divergent runs � of H with �(0; 0) = � there is a position � of � such that

(1) (�(�); �+ ��(�)) j= �2, and (2) for all positions �0 � � of �, (�(�0); �+ ��(�
0)) j= �1 _ �2.

Let � be a closed formula of TCTL. A state � 2 � satis�es �, denoted � j= �, if (�; �) j= � for

all clock valuations �. The linear hybrid system H satis�es �, denoted H j= �, if all states of H

satisfy �. The characteristic set [[�]] � � of � is the set of states that satisfy �.

The model-checking algorithm

Given a closed TCTL-formula �, a model-checking algorithm computes the characteristic set

[[�]]. We present the symbolic model-checking algorithm for timed automata [HNSY94], which

is a semidecision procedure for model checking TCTL-formulas over linear hybrid systems.

The procedure is based on �xpoint characterizations of the TCTL-modalities in terms of a

binary next operator .. Given two regions R;R0
� �, the region R . R0 is the set of states �

that have a successor �0 2 R0 such that all states between � and �0 are contained in R [ R0:

(`; �) 2 (R . R0) i�

9(`0; �0) 2 R0; t 2 R�0: ((`; �) 7!t (`0; �0) ^ 80 � t0 � t: (`; � + t0) 2 (R [R0));

that is, the . operator is a \single-step until" operator.

To de�ne the . operator syntactically, we introduce some notation. For a linear formula  , we

extend the tcp operator such that

tcp
`
[ ][�](t) i� 80 � t0 � t: '`[�](t

0) 2 (Inv(`)\ [[ ]]);

that is, all valuations along the evolution by time t from the state (`; �) satisfy not only the invariant

of location ` but also  . For a state � = (`; �) 2 � we write '[�] for the function '`[�], and for a

region R =
S
`2Loc(`; R`) we write

tcp[R][�](t) i� tcp
`
[R`][�](t):

Now, for two regions R;R0 � �, we de�ne the region R . R0 as

� 2 (R . R0) i� 9t 2 R�0: ('[�](t) 2 pre[R0] ^ tcp[R [R0][�](t)):

Lemma 4.3 For all linear hybrid systems H, if R and R0 are two linear regions of H, then so is

R . R0.

In [HNSY94] it is shown that for nonzeno timed automata, the meaning of both TCTL-

modalities 9U and 8U can be computed iteratively as �xpoints, using the . operator. While

for multirate timed systems, the iterative �xpoint computation always terminates, this is no longer

the case for linear hybrid systems in general. Lemma 4.3, however, ensures that all regions that

are computed by the process are linear and each step of the procedure is, therefore, e�ective.

Here, we present the method for some important classes of TCTL-formulas:
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� Let R and R0 be the characteristic sets of the two TCTL-formulas � and �0, respectively.

The characteristic set of the formula �9U�0 can be iteratively computed as
S
i
Ri with

{ R0 = R0, and

{ for all i � 0, Ri+1 = Ri [ (R . Ri).

� To check if the TCTL-formula � is an invariant of H , we check if the set of initial states

is contained in the characteristic set of the formula 82�. This characteristic set can be

iteratively computed as
T
i
Ri with

{ R0 = [[�]], and

{ for all i � 0, Ri+1 = Ri \ :(true .:Ri).

� The real-time response property asserting that a given event occurs within a certain time

bound is expressed in TCTL by a formula of the form 83�c �, whose characteristic set can

be iteratively computed as :
S
i
Ri[z := 0] with

{ R0 = [[z > c]], and

{ for all i � 0, Ri+1 = Ri [ ((:R) . Ri),

where R = [[�]] and z 2 C.

Example: the temperature control system

The goal is to maintain the temperature of the coolant between lower and upper bounds �m and

�M . If the temperature rises to its maximum �M and it cannot decrease because no rod is available,

a complete shutdown is required.

Now, let �� = �M � �m. Clearly, the time the coolant needs to increase its temperature from

�m to �M is �r =
��
vr
, and the refrigeration times for rod 1 and rod 2 are �1 =

��
v1

and �2 = ��
v2
,

respectively.

�m

�M

�1 �r �2 �r �1

Figure 9: Refrigeration times

The question is whether the system will ever reach the shutdown state. Clearly, if temperature

rises at a rate slower than the time of recovery for the rods, i.e., �r � T , shutdown is unreachable.

Moreover, it can be seen that 2�r + �1 � T ^ 2�r + �2 � T is a necessary and su�cient condition

for never reaching the shutdown state (see Fig. 9).
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The property stating that state 3 (shutdown) is always unreachable corresponds to the following

TCTL formula:

(pc = 0 ^ � � �M ^ x1 � T ^ x2 � T ) ) 82:(pc = 3)

or equivalently,

(pc = 0 ^ � � �M ^ x1 � T ^ x2 � T ) ) :93(pc = 3)

� Let vr = 6, v1 = 4, v2 = 3, �m = 3, �M = 15 and T = 6. In this case the condition

2�r + �1 � T ^ 2�r + �2 � T holds. Using Kronos, we compute the characteristic set of

93pc = 3. The results obtained at each iteration are shown below, where each  i has been

computed according to the method described above:

 0 = pc = 3

 1 = (pc = 0 ^ � � 15 ^ 6x1 < � + 21 ^ 6x2 < � + 21)_ pc = 3

 2 = (pc = 0 ^ � � 15 ^ 6x1 < � + 21 ^ 6x2 < � + 21)_

(pc = 1 ^ 3 � � � 15 ^ 4x2 + � < 19)_

(pc = 2 ^ 3 � � � 15 ^ 3x1 + � < 15)_ pc = 3

 3 = (pc = 0 ^ � � 15 ^ (6x1 < � + 21 ^ 6x2 < � + 21 _ 6x2 + 3 < �)) _

(pc = 1 ^ 3 � � � 15 ^ 4x2 + � < 19)_

(pc = 2 ^ 3 � � � 15 ^ 3x1 + � < 15)_ pc = 3

 4 =  3

The state predicate :
W3
i=0  i[z := 0] representing the meaning of :93(pc = 3) is

pc = 0 ^ � � 15 ^ (� + 21 � 6x1 ^ � � 6x2 + 3 _ � + 21 � 6x2)_

pc = 1 ^ 3 � � � 15 ^ 19 � 4x2 + � _

pc = 2 ^ 3 � � � 15 ^ 15 � 3x1 + �

Since the state predicate pc = 0 ^ � � 15 ^ x1 � 6 ^ x2 � 6 characterizing the set of initial

states implies the predicate above, the system satis�es the invariant as required.

� Suppose that we change the time of recovery to T = 8. Now, the condition 2�r + �1 �

T ^ 2�r + �2 � T is no longer satis�ed. Again, we compute using Kronos the characteristic

set of 93pc = 3. The results obtained at each iteration are the following:

 0 = pc = 3

 1 = (pc = 0 ^ � � 15 ^ 6x1 < � + 33 ^ 6x2 < � + 33)_ pc = 3

 2 = (pc = 0 ^ � � 15 ^ 6x1 < � + 33 ^ 6x2 < � + 33)_

(pc = 1 ^ 3 � � � 15 ^ 4x2 + � < 27)_

(pc = 2 ^ 3 � � � 15 ^ 3x1 + � < 21)_ pc = 3

 3 = (pc = 0 ^ � � 15 ^ (6x1 + 3 < � _ 6x2 < � + 3 _

(6x1 < � + 33 ^ 6x2 < � + 33)))_

(pc = 1 ^ 3 � � � 15 ^ 4x2 + � < 27)_
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parameters number of running

�m �M vr v1 v2 T iterations times

3 15 6 4 3 6 4 0.033

3 15 6 4 3 8 4 0.033

10 190 45 30 18 20 6 0.083

250 1100 34 25 10 80 4 0.033

Table 1: Performances for the temperature control system

(pc = 2 ^ 3 � � � 15 ^ 3x1 + � < 21)_ pc = 3

 4 = (pc = 0 ^ � � 15 ^ (6x1 + 3 < � _ 6x2 < � + 3 _

(6x1 < � + 33 ^ 6x2 < � + 33)))_

(pc = 1 ^ 3 � � � 15 ^ 4x2 + � < 27)_

(pc = 2 ^ 3 � � � 15)_ pc = 3

 5 = (pc = 0 ^ � � 15 ^ (� + 33 � 6x2 _ 6x1 < � + 33 _ 6x2 < � + 3))_

(pc = 1 ^ 3 � � � 15 ^ 4x2 + � < 27)_ (pc = 2 ^ 3 � � � 15)_

pc = 3

 6 = (pc = 0 ^ � � 15 ^ (� + 33 � 6x2 _ 6x1 < � + 33 _ 6x2 < � + 3))_

(pc = 1 ^ 3 � � � 15)_ (pc = 2 ^ 3 � � � 15)_ pc = 3

 7 = (pc = 0 ^ � � 15) _ (pc = 1 ^ 3 � � � 15)_ (pc = 2 ^ 3 � � � 15)_

pc = 3

 8 =  7

The state predicate :
W7
i=0  i[z := 0] representing the meaning of :93(pc = 3) is

pc = 0 ^ � > 15 _

pc = 1 ^ (� < 3 _ � > 15)_

pc = 2 ^ (� < 3 _ � > 15)

and since the state predicate pc = 0 ^ � � 15 ^ x1 � 6 ^ x2 � 6 characterizing the set of

initial states does not imply the predicate above we have that shutdown is reachable.

Table 1 shows the number of iterations and the running times (measured in seconds) obtained

with Kronos on a SUN 4 Sparc Station for verifying the formula on the system for di�erent values

of the parameters. (Performance �gures for HyTech can be found in [AHH93, HH94].)

Example: the billiards game

Consider the movement of the grey ball on the billard table. It is possible that the grey ball returns

to the initial position with the initial direction. In this case the movement is periodic. A su�cient

condition for the periodicity is that l, h, vx and vy are integers. The period T is calculated as

follows:

T = lcm

 
2l

vx
;
2h

vy

!
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parameters formula number of running

l h vx vy xg yg xw yw iterations times

13 10 2 1 0 0 10 8 [periodT ] 55 7.77

[touch] 55 6.69

[touchT ] 55 8.17

4 2 5 1 0 0 1 1 [periodT ] 24 1.97

[touch] 24 1.58

[touchT ] 24 1.90

3 8 1 2 0 0 1 6 [periodT ] 10 0.56

[touch] 10 0.40

[touchT ] 10 0.48

Table 2: Performances for the billards game

Now, since the movement of the grey ball has period T , the �rst collision with the white ball, if it

takes place, will occur before time T . We can express this property in TCTL as follows:1

[periodT ] :(:(x = xw ^ y = yw)9U>T (x = xw ^ y = yw))

We would like to characterize also all the positions where the grey ball may be placed in order

to be able to touch the white ball. This set of points is characterized by the formula:

[touch] 93(x = xw ^ y = yw)

Since the movement of the grey ball has period T , this property can also be speci�ed by the formula

[touchT ] 93�T (x = xw ^ y = yw)

Table 2 shows the number of iterations and the running times (measured in seconds) obtained

with Kronos on a SUN 4 Sparc Station for verifying the formulas [periodT ], [touch] and [touchT ]

on the billiards game for di�erent values of the parameters.

5 Conclusion

We showed that the veri�cation problem for hybrid systems is intrinsically di�cult even under

severe restrictions. Then we identi�ed linear hybrid systems as a class of hybrid systems for which

algorithmic analysis techniques exist and perform reasonably well. For general hybrid systems

our analysis methods can be applied modulo limitations that concern the e�ective computation of

boolean operations, time closures, preconditions, and postconditions of state sets.

Future work is necessary to improve both the cost and the scope of our approach. The cost

can be improved by designing e�cient algorithms for representing, comparing, manipulating, and

approximating state sets. The scope can be improved by identifying other classes of hybrid systems

to which semidecision procedures based on reachability analysis apply. For example, our results have

recently been extended to a more general model, where the rates of variables are not constant in each

location, but vary arbitrarily between given constant lower and upper bounds [AHH93, OSY94].

1If T is not an integer, but is a rational p

q
, we have to multiply l, h, xg, yg, xw and yw by q to make it an integer.
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In that case the state sets that are computed by the veri�cation procedures are also de�nable by

linear formulas. The more general case is interesting for the approximation of nonlinear hybrid

systems.

We did not discuss any analysis techniques that cannot be formulated within the framework

of reachability analysis. Most of these techniques are based on digitization methods that reduce

veri�cation problems for hybrid systems to veri�cation problems for discrete systems, which are

decidable [KPSY93, PV94].
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