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Abstract

There is a popular belief in neuroscience that we are primarily data limited, that producing large, multimodal, and complex
datasets will, enabled by data analysis algorithms, lead to fundamental insights into the way the brain processes information.
Microprocessors are among those artificial information processing systems that are both complex and that we understand at
all levels, from the overall logical flow, via logical gates, to the dynamics of transistors. Here we take a simulated classical
microprocessor as a model organism, and use our ability to perform arbitrary experiments on it to see if popular data
analysis methods from neuroscience can elucidate the way it processes information. We show that the approaches reveal
interesting structure in the data but do not meaningfully describe the hierarchy of information processing in the processor.
This suggests that current approaches in neuroscience may fall short of producing meaningful models of the brain.

The development of high-throughput techniques
for studying neural systems is bringing about an
era of big-data neuroscience [1, 2]. Scientists are
beginning to reconstruct connectivity [3], record
activity [4], and simulate computation [5] at un-
precedented scales. However, even state-of-the-art
neuroscientific studies are quite limited in organ-
ism complexity and spatiotemporal resolution [6, 7,
8]. It is hard to evaluate how much scaling these
techniques will help us understand the brain.

A central problem in neuroscience is that we do
not have a good way of evaluating if a theory is
good. However, there are other systems, in partic-
ular man made ones that we do understand. As
such, one can take a technical system and ask if
the methods used for studying biological systems
would allow understanding the technical system.
In this way, we take as inspiration Yuri Lazbnick’s
well-known 2002 critique of modeling in molecular
biology, “Could a biologist fix a radio?” [9]. A radio
is clearly much simpler than the nervous system. As
such it is desirable to ask if we could understand
a more complex while still understandable system.
A great such system are the simple processors that
were used to power early computers. We may want
to ask if our approaches would suffice to understand
a processor.

Here we will try to understand a known artifi-
cial system, a historic processor by applying data
analysis methods from neuroscience. We want to
see what kind of an understanding would emerge
from using a broad range of currently popular data
analysis methods. To do so, we will analyze the
connections on the chip, the effects of destroying
individual transistors, tuning curves, the joint statis-

tics across transistors, local activities, estimated con-
nections, and whole brain recordings. For each of
these we will use standard techniques that are pop-
ular in the field of neuroscience. We find that many
measures are surprisingly similar between the brain
and the processor and also, that our results do not
lead to a meaningful understanding of the proces-
sor. The analysis can not produce the hierarchical
understanding of information processing that most
students of electrical engineering obtain. We argue
that the analysis of this simple system implies that
we should be far more humble at interpreting re-
sults from neural data analysis. It also suggests that
the availability of unlimited data, as we have for
the processor, is in no way sufficient to allow a real
understanding of the brain.

An engineered model organism

The MOS 6502 (and the virtually identical MOS
6507) were the processors in the Apple I, the Com-
modore 64, and the Atari Video Game System (VCS)
(see [10] for a comprehensive review). The Vi-
sual6502 team reverse-engineered the 6507 from
physical integrated circuits [11] by chemically re-
moving the epoxy layer and imaging the silicon die
with a light microscope. Much like with current
connectomics work [12, 13], a combination of algo-
rithmic and human-based approaches were used to
label regions, identify circuit structures, and ulti-
mately produce a transistor-accurate netlist (a full
connectome ) for this processor consisting of 3510
enhancement-mode transistors. Several other sup-
port chips, including the Television Interface Adap-
tor (TIA) were also reverse-engineered and a cycle-
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Figure 1: Example behaviors. We use three classical video
games as example behaviors for our model organism – (A) Don-
key Kong (1981), (B) Space Invaders (1978), and (C) Pitfall
(1981).

accurate simulator was written that can simulate
the voltage on every wire and the state of every
transistor. The reconstruction has sufficient fidelity
to run a variety of classic video games, which we
will detail below. The simulation generates roughly
1.5GB/sec of state information, allowing a real big-
data analysis of the processor.

The simplicity of early video games has led to
their use as model systems for reinforcement learn-
ing [14] and computational complexity research [15].
The video game system (“whole animal”) has a well
defined output in each of the three behavioral con-
ditions (games). It produces an input-dependent
output that is dynamic, and, in the opinion of the
authors, quite exciting. It can be seen as a more
complex version of the Mus Silicium project [16].
The richness of the outputs motivate us to study this
model system’s nervous system (the MOS 6502) in
the light of these behaviors.

For this paper we will only use three behaviors,
three different games. Obviously these “behaviors”
are qualitatively different from those of animals and
may seem more complicated. However, even the sim-
ple behaviors that are studied in neuroscience still
involve a plethora of components, typically includ-
ing the allocation of attention, cognitive processing,
and multiple modalities of inputs and outputs. As
such, the breadth of ongoing computation in the
processor may actually be simpler than those in the
brain.

The objective of clever experimental design in neu-
roscience often is to find behaviors that only engage
one kind of computation in the brain. In the same
way, all our experiments on the chip will be limited
by us only using these games to probe it. As much
as more neuroscience is interested in naturalistic be-
haviors [17], here we analyze a naturalistic behavior
of the chip.

Much has been written about the differences be-

tween computation in silico and computation in bi-
ological systems [18, 19]—the stochasticity, redun-
dancy, and robustness [20] present in biological sys-
tems seems dramatically different from that of a
microprocessor. But there are many parallels we
can draw between the two types of systems. Both
systems consist of many similar units. They operate
on multiple timescales. They consist of somewhat
specialized modules organized hierarchically. They
can flexibly route information and retain memory
over time. Despite many differences there are also
many similarities.

Importantly, many of the differences should make
analysing the chip easier than analyzing the brain.
For example, it has a clearer architecture and far
fewer modules. The human brain has hundreds of
different types of neurons and a similar diversity of
proteins at each individual synapse [21], whereas
our model microprocessor has only one type of tran-
sistor (which has only three terminals). The proces-
sor is deterministic while neurons exhibit various
sources of randomness. With just a couple thousand
transistors it is also far smaller. And, above all, in
the simulation it is fully accessible to any and all
experimental manipulations that we might want to
do on it.

What does it mean to understand a system

Importantly, the processor allows us to ask “do we
really understand this system?” Most scientists have
at least behavioral-level experience with these classi-
cal video game systems, and many in our commu-
nity, including some electrophysiologists and com-
putational neuroscientists, have formal training in
computer science, electrical engineering, computer
architecture, and software engineering. As such, we
believe that most neuroscientists may have better
intuitions about the workings of a processor than
about the workings of the brain.

What constitutes an understanding of a system?
Lazbnick’s original paper argued that understand-
ing was achieved when one could “fix” a broken
implementation. Understanding of a particular re-
gion or part of a system would occur when one
could describe so accurately the inputs, the trans-
formation, and the outputs that one brain region
could be replaced with an entirely synthetic compo-
nent. Indeed, some neuroengineers are following
this path for sensory [22] and memory [23] systems.
In this view, being able to fix something is sufficient
to count as an understanding.

Alternatively, we could seek to understand a sys-
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Figure 2: For the processor we know pretty well what we mean with understand (A ) The instruction fetcher obtains the
next instruction from memory. This then gets converted into electrical signals by the instruction decoder, and these signals enable and
disable various internal parts of the processor, such as registers and the arithmetic logic unit (ALU). The ALU performs mathematical
operations such as addition and subtraction. The results of these computations can then be written back to the registers or memory. (B)
Within the ALU there are well-known circuits, such as this one-bit adder, which sums two one-bit signals and computes the result
and a carry signal. (C) Each logic gate in (B) has a known truth table and is implemented by a small number of transistors. (D) A
single and gate is comprised of transistors, and has a physical instantiation as layers of silicon and metal on the chip (E). (F) For each
transistor, we precisely know the I/V curve between its inputs and outputs.

tem at differing, complementary levels of analy-
sis, as David Marr and Tomaso Poggio outlined in
1982 [24]. First, we can ask if we understand what
the system does at the computational level: what
is the problem it is seeking to solve via computa-
tion? We can ask how the system performs this task
algorithmically : what processes does it employ to
manipulate internal representations? Finally, we can
seek to understand how the system implements the
above algorithms at a physical level. What are the
characteristics of the underlying implementation (in
the case of neurons, ion channels, synaptic conduc-
tances, neural connectivity, and so on) that give rise
to the execution of the algorithm? Note that at each
level, we could conceive of multiple plausible solu-
tions for the level below. This view demands for an
understanding at all levels, and thus sets the bar for
“understanding” considerably higher.

In this paper, much as in systems neuroscience,
we consider the quest to gain an understanding
of how circuit elements give rise to computation.
Computer architecture studies how small circuit
elements, like registers and adders, give rise to a
system capable of performing general-purpose com-
putation. When it comes to the processor, we un-

derstand this level extremely well, as it is taught to
most computer science undergraduates. Knowing
what a satisfying answer to "how does a processor
compute?" looks like makes it easy to evaluate how
much we learn from an experiment or an analysis.

What would a satisfying understanding of the
processor look like?

We can draw from our understanding of computer
architecture to firmly ground what a full under-
standing of a processor would look like 2. The pro-
cessor is used to implement a computing machine.
It implements a finite state machine which sequen-
tially reads in an instruction from memory (fig 2,
greeen) and then either modifies its internal state or
interacts with the world. The internal state is stored
in a collection of byte-wide registers (fig 2, red). As
an example, the processor might read an instruction
from memory telling it to add the contents of regis-
ter A to the contents of register B. It then decodes
this instruction, enabling the arithmetic logic unit
(ALU, fig 2, blue) to add those registers, storing the
output. Optionally, the next instruction might save
the result back out to RAM (fig 2, yellow). It is this
repeated cycle that gives rise to the complex series of
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behaviors we can observe in this system. Note that
this description in many ways ignores the functions
of the individual transistors, focusing instead on cir-
cuits modules like "registers" which are composed
of many transistors, much as a systems neurosci-
entist might focus on a cytoarchitecturally-distinct
area like hipppocampus as opposed to individual
neurons.

Each of the functions within the processor con-
tains algorithms and a specific implementation.
Within the arithmetic logic unit, there is a byte wide
adder, which is in part made of binary adders (fig
2b), which are made out of AND/NAND gates,
which are made of transistors. This is in a similar
way as the brain consists of regions, circuits, micro-
circuits, neurons, and synapses.

If we were to analyze a processor using techniques
from systems neuroscience we would hope that it
helps guide us towards the descriptions that we
used above. In the rest of the paper we will apply
neuroscience techniques to data from the processor.
We will finally discuss how neuroscience can work
towards techniques that will make real progress at
moving us closer to a satisfying understanding of
computation, in the chip, and in our brains.

Results

To showcase both the promise and the challenges
present in big-data neuroscience, we will attempt
to understand the behavior of this processor using
methods that are standard in neuroscience. We will
then examine the processor at increasingly-fine spa-
tial and temporal resolutions, eventually achieving
true “big-data” scale : a “processor activity map”,
with every transistor state and every wire voltage.
As we apply the various techniques that are cur-
rently used in neuroscience we will ask how the
analyses bring us closer to an understanding of the
microprocessor (Fig. 2). We will use this well de-
fined comparison to ask questions about the validity
of current approaches to studying information pro-
cessing in the brain.

Lesion a single transistor at a time

Lesions studies allow us to study the causal effect
of removing a part of the system. We thus chose
a number of transistors and asked if they are nec-
essary for each of the behaviors of the processor
(figure 4. In other words, we asked if removed each
transistor, if the processor would then still boot the
game. Indeed, we found a subset of transistors that

Figure 3: Optical reconstruction of the processor to obtain its
connectome.In [11], the (A) MOS 6502 silicon die was examined
under a visible light microscope (B) to build up an image mosaic
(C) of the chip surface. Computer vision algorithms were used
to identify metal and silicon regions (E) to detect transistors
(F), (G) ultimately producing a complete accurate netlist of the
processor (D)
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Figure 4: Lesioning every single transistor to identify
function. We identify transistors whose elimination disrupts
behavior analogous to lethal alleles or lesioned brain areas. These
are transistors whose elimination results in the processor fail-
ing to render the game. (A) Transistors which impact only one
behavior, colored by behavior. (B) Breakdown of the impact of
transistor lesion by behavioral state. The elimination of 1565
transistors have no impact, and 1560 inhibit all behaviors.

makes one of the behaviors (games) impossible. We
might thus conclude they are uniquely responsible
for the game – perhaps there is a Donkey Kong
transistor or a Space Invaders transistor. Even if
we can lesion each individual transistor, we do not
get much closer to an understanding of how the
processor really works.

This finding of course is grossly misleading. The
transistors are not specific to any one behavior or
game but rather implement simple functions, like
full adders. The finding that some of them are im-
portant while others are not for a given game is only
indirectly indicative of the transistor’s role and is
unlikely to generalize to other games. Lazebnik [9]
made similar observations about this approach in
molecular biology, suggesting biologists would ob-
tain a large number of identical radios and shoot
them with metal particles at short range, attempting
to identify which damaged components gave rise to
which broken phenotype.

This example nicely highlights the importance
of isolating individual behaviors to understand the
contribution of parts to the overall function. If we
had been able to isolate a single function, maybe
by having the processor produce the same math
operation every single step, then the lesioning ex-
periments could have produced more meaningful
results. However, the same problem exists in neu-
roscience. It is extremely difficult or technically

Figure 5: Plotting the spikes to understand their statis-
tics. (A) 10 identified transistors and (B) their spiking (rising
edge) behavior over a short time window during behavior DK.

impossible to produce behaviors that only require a
single aspect of the brain.

Beyond behavioral choices, we have equivalent
problems in neuroscience that make the interpre-
tation of lesioning data complicated [25]. In many
ways the chip can be lesioned in a cleaner way than
the brain: we can individually abolish every single
transistor (this is only now becoming possible with
neurons in simple systems [26, 27]). Even without
this problem, finding that a lesion in a given area
abolishes a function is hard to interpret in terms of
the role of the area for general computation. And
this ignores the tremendous plasticity in neural sys-
tems which can allow regions to take over for dam-
aged areas. In addition to the statistical problems
that arise from multiple hypothesis testing, it is ob-
vious that the “causal relationship” we are learning
is incredibly superficial: a given transistor is obvi-
ously not “responsible” for Donkey Kong or Space
Invaders.

Analyzing tuning properties of individual
transistors

We may want to try to understand the processor by
understanding the activity of each individual transis-
tor. We study the “off-to-on” transition, or “spike”,
produced by each individual transistor. Each tran-
sistor will be activated at multiple points in time.
Indeed, these transitions look surprisingly similar
to the spike trains of neurons (fig 5). Following the
standards in neuroscience we may then quantify the
tuning selectivity of each transistor. For each of our
transistors we can plot the spike rate as a function of
the luminance of the most recently displayed pixel
(fig 6). For a small number of transistors we find a
strong tuning to the luminance of the most recently
displayed pixel, which we can classify into simple
(fig 6a) and (fig 6b) complex curves. Interestingly,
however, we know for each of the five displayed
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Figure 6: Quantifying tuning curves to understand func-
tion. Mean transistor response as a function of output pixel
luminance. (A) Some transistors exhibit simple unimodal tuning
curves. (B) More complex tuning curves. (C) Transistor location
on chip.

transistors that they are not directly related to the
luminance of the pixel to be written, despite their
strong tuning. The transistors relate in a highly non-
linear way to the ultimate brightness of the screen.
As such their apparent tuning is not really insightful
about their role. In our case, it probably is related
to differences across game stages. This shows how
obtaining an understanding of the processor from
tuning curves is difficult.

Much of neuroscience is focused on understand-
ing tuning properties of neurons, circuits, and brain
areas [28, 29, 30, 31]. Arguably this approach is
more justified for the nervous system because brain
areas are more strongly modular. However, this
may well be an illusion and many studies that have
looked carefully at brain areas have revealed a daz-
zling heterogeneity of responses [32, 33, 34]. Even if
brain areas are grouped by function, examining the
individual units within may not allow for conclusive
insight into the nature of computation.

The correlational structure exhibits weak pair-
wise and strong global correlations

Moving beyond correlating single units with be-
havior, we can examine the correlations present be-
tween individual transistors. We thus perform a
spike-word analysis [35] by looking at “spike words”
across 64 transistors in the processor. We find little
to very weak correlation among most pairs of tran-
sistors (figure 7a). This weak correlation suggests
modeling the transistors’ activities as independent,
but as we see from shuffle analysis (figure 7b), this
assumption fails disastrously at predicting correla-
tions across many transistors.

In neuroscience, it is known that pairwise corre-

Figure 7: Spike-word analysis to understand synchronous
states. (A) Pairs of transistors show very weak pairwise cor-
relations during behavior SI, suggesting independence. (B) If
transistors were independent, shuffling transistor labels (blue)
would have no impact on the distribution of spikes per word,
which is not the case (red)

lations in neural systems can be incredibly weak,
while still reflecting strong underlying coordinated
activity. This is often assumed to lead to insights
into the nature of interactions between neurons [35].
However, the processor has a very simple nature
of interactions and yet produces remarkably simi-
lar spike word statistics. This again highlights how
hard it is to derive functional insights from activity
data using standard measures.

Analyzing local field potentials

The activity of the entire chip may be high dimen-
sional, yet we know that the chip, just like the brain,
has some functional modularity. As such, we may
be able to understand aspects of its function by ana-
lyzing the average activity within localized regions,
in a way analogous to the local field potentials or
the BOLD signals from functional magnetic imaging
that are used in neuroscience. We thus analyzed
data in spatially localized areas (fig 8a). Interest-
ingly, these average activities look quite a bit like
real brain signals (Fig 8b). Indeed, they show a
rather similar frequency power relation of roughly
power-law behavior. This is often seen as a strong
sign of self-organized criticality [36]. Spectral anal-
ysis of the time-series reveals region-specific oscil-
lations or "rhythms" that have been suggested to
provide a clue to both local computation and overall
inter-region communication. In the chip we know
that while the oscillations may reflect underlying
periodicity of activity, the specific frequencies and lo-
cations are epiphenomena. They arise as an artifact
of the computation and tell us little about the un-
derlying flow of information. And it is very hard to
attribute (self-organized) criticality to the processor.

In neuroscience there is a rich tradition of analyz-
ing the rhythms in brain regions, the distribution of
power across frequencies as a function of the task,
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a b c

Figure 8: Plotting local field potentials to understand network properties. We recorded from the processor during behavior
DK. (A) Transistor switching is integrated and low-pass filtered over the indicated region. (B) local-field potential measurements from
the indicated areas. (C) Spectral analysis of the indicated LFP regions identifies varying region-specific oscillations or “rhythms”

and the relation of oscillatory activity across space
and time. However, the example of the processor
shows that the relation of such measures to underly-
ing function can be extremely complicated. In fact,
the authors of this paper would have expected far
more peaked frequency distributions for the chip.
Moreover, the distribution of frequencies in the brain
is often seen as indicative about the underlying bio-
physics. In our case, there is only one element, the
transistor, and not multiple neurotransmitters. And
yet, we see a similarly rich distribution of power
in the frequency domain. This shows that complex
multi-frequency behavior can emerge from the com-
bination of many simple elements. Modeling the
processor as a bunch of coupled oscillators, as is
common in neuroscience, would make little sense.

Granger causality to describe functional con-
nectivity

Granger causality [37] has emerged as a method
of assessing putative causal relationships between
brain regions based on LFP data. To see if we can
understand information transmission pathways in
the chip based on such techniques, we perform con-
ditional Granger causality analysis on the above-
indicated LFP regions for all three behavioral tasks,
and plot the resulting inferences of causal interac-
tions (figure 9). We find that the decoders affect
the status bits. We also find that the registers are
affected by the decoder, and that the accumulator
is affected by the registers. We also find commu-

nication between the two parts of the decoder for
Donkey Kong, and a lack of communication from
the accumulator to the registers in Pitfall. Some
of these findings are true, registers really affect the
accumulator and decoders really affect the status
bits. Other insights are less true, e.g. decoding is
independent and the accumulator obviously affects
the registers. While some high level insights may be
possible, the insight into the actual function of the
processor is limited.

The analysis that we did is very similar to the
situation in neuroscience. In neuroscience as well,
the signals come from a number of local sources.
Moreover, there are also lots of connections but we
hope that the methods will inform us about the
relevant ones. It is hard to interpret the results -
what exactly does the Granger causality model tell
us about. Granger causality tells us how activity in
the past are predictive of activity in the future, and
the link from there to causal interactions is tentative
at best [38]. Even if such methods would reliably
tell us about large scale influences, it is a hard to get
from a coarse resolution network to the microscopic
computations.

Dimensionality reduction reveals global dy-
namics independent of behavior

In line with recent advances in whole-animal record-
ings [6, 7, 8, 2], we measure the activity across all
3510 transistors simultaneously for all three behav-
ioral states (fig 10) and plot normalized activity for
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Figure 9: Analyzing conditional Granger causality to un-
derstand functional connectivity. Each of the recordings
come from a well defined functional subcircuit. Green and blue
are two parts of the decoder circuit. Red includes the status bits.
Violet are part of the registers and yellow includes parts of the
accumulator. We estimated for each behavioral state from LFP
sites indicated in figure 8. Arrows indicate direction of Granger-
causal relationship, arrow thickness indicates effect magnitude.

Figure 10: Whole-brain recording to have all the data.
For each of three behavioral states we plotted all the activities.
Each transistor’s activity is normalized to zero-mean and unit
variance and plotted as a function of time.

each transistor versus time. Much as in neural sys-
tems, some transistors are relatively quiet and some
are quite active, with a clear behaviorally-specific
periodicity visible in overall activity.

While whole-brain recording may facilitate iden-
tification of putative areas involved in particular
behaviors [39], ultimately the spike-level activity at
this scale is difficult to interpret. Thus scientists
turn to dimensionality reduction techniques [40, 41,
2], which seek to explain high-dimensional data
in terms of a low-dimensional representation of
state. We use non-negative matrix factorization [42]
to identify constituent signal parts across all time-
varying transistor activity. We are thus, for the first
time, taking advantage of all transistors simultane-
ously.

Analogous with [2] we plot the recovered dimen-
sions as a function of time (fig 11a) and the tran-

Figure 11: Dimensionality Reduction to understand the
roles of transistors. We apply non-negative matrix factoriza-
tion (NMF) to the space invaders (SI) task. (A) shows the six
reduced dimensions as a function of time showing clear stereo-
typed activity. (B) the learned transistor state vectors for each
dimension (C) Map of total activity — color indicates the di-
mension where the transistor has maximum value, and both
saturation and point size indicate the magnitude of that value.

sistor activity profile of each component (fig 11b).
We can also examine a map of transistor-component
activity both statically (fig 11c) and dynamically
(videos available in online supplementary materials).
Clearly there is a lot of structure in this spatiotem-
poral dataset.

To derive insight into recovered dimensions, we
can try and relate parts of the low-dimensional time
series to known signals or variables we know are
important (fig 12a). Indeed, we find that some com-
ponents relate to both the onset and offset (rise and
fall) of the clock signal(fig 12b,c). This is quite in-
teresting as we know that the processor uses a two-
phase clock. We also find that a component relates
strongly to the processors read-write signal (fig 12d).
Thus, we find that variables of interest are indeed
encoded by the population activity in the processor.

In neuroscience, it is also frequently found that
components from dimensionality reduction relate
to variables of interest [43, 44]. This is usually then
seen as an indication that the brain cares about these
variables. However, clearly, the link to the read-write
signal and the clock does not lead to an overly im-
portant insight into the way the processor actually
processes information. In addition, it’s likely that
given their global nature, lower-throughput record-
ing technologies could already have revealed these
signals. We should be careful at evaluating how
much we understand and how much we are aided
by more data.
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Figure 12: Relating dimensions to known signals to un-
derstanding the population code. (A) For each of the recov-
ered dimensions in figure 11 we compute the correlation in time
with 25 known signals inside the process. As we know the pur-
pose of these signals we can measure how well the dimensions
explain true underlying function. (B) Dimension 1 is strongly
correlated with the processor clock CLK0, whereas (C) dimen-
sion 4 is correlated with the 180-degree out of phase CLK1OUT
signal. (D) dimension 0 is strongly correlated with signal RW,
indicating the processor switching between reading and writing
memory.

Discussion

Here we have taken a reconstructed and simulated
processor and treated the data "recorded" from it in
the same way we have been trained to analyze brain
data. We have found that the standard data analysis
techniques produce results that are surprisingly sim-
ilar to the results found about real brains. However,
in the case of the processor we know its function
and structure and our results stayed well short of
what we would call a satisfying understanding.

Obviously the brain is not a processor, and a
tremendous amount of effort and time have been
spent characterizing these differences over the past
century [18, 45, 19]. Neural systems are analog and
and biophysically complex, they operate at tempo-
ral scales vastly slower than this classical processor
but with far greater parallelism than is available
in state of the art processors. Typical neurons also
have several orders of magnitude more inputs than
a transistor. Moreover, the design process for the
brain (evolution) is dramatically different from that
of the processor (the MOS6502 was designed by a
small team of people over a few years). As such, we
should be skeptical about generalizing from proces-
sors to the brain.

However, we cannot write off the failure of these
methods on the processor simply because processors
are different from neural systems. After all, the brain
also consists of a large number of modules that can
equally switch their input and output properties. It
also has prominent oscillations, which may act as
clock signals as well [46]. Similarly, a small number
of relevant connections can produce drivers that
are more important than those of the bulk of the
activity. Also, the localization of function that is
often assumed to simplify models of the brain is
only a very rough approximation. This is true even
in an area like V1 where a great diversity of co-
localized cells can be found [47]. Altogether, there
seems to be little reason to assume that any of the
methods we used should be more meaningful on
brains than on the processor.

To analyze our simulations we needed to convert
the binary transistor state of the processor into spike
trains so that we could apply methods from neuro-
science to (see Methods). While this may be artefac-
tual, we want to remind the reader that in neuro-
science the idea of an action potential is also only an
approximate description of the effects of a cell’s ac-
tivity. For example, there are known effects based on
the extrasynaptic diffusion of neurotransmitters [48]
and it is believed that active conductances in den-
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drites may be crucial to computation [49].
Our behavioral mechanisms are entirely passive

as both the transistor based simulator is too slow
to play the game for any reasonable duration and
the hardware for game input/output has yet to be
reconstructed. Even if we could “play” the game,
the dimensionality of the input space would consist
at best of a few digital switches and a simple joy-
stick. One is reminded of the reaching tasks which
dominate a large fraction of movement research.
Tasks that isolate one kind of computation would be
needed so that interference studies would be really
interpretable.

If we had a way of hypothesizing the right struc-
ture, then it would be reasonably easy to test. In-
deed, there are a number of large scale theories of
the brain [50, 5, 51]. However, the set of potential
models of the brain is unbelievably large. Our data
about the brain from all the experiments so far, is
very limited and based on the techniques that we
reviewed above. As such, it would be quite impres-
sive if any of these high level models would actually
match the human brain to a reasonable degree. Still,
they provide beautiful inspiration for a lot of ongo-
ing neuroscience research and are starting to exhibit
some human-like behaviors[50]. If the brain is actu-
ally simple, then a human can guess a model, and
through hypothesis generation and falsification we
may eventually obtain that model. If the brain is not
actually simple, then this approach may not ever
converge.

The analytic tools we have adopted are in many
ways “classic”, and are taught to graduate students
in neuroinformatics courses. Recent progress in
methods for dimensionality reduction, subspace
identification, time-series analysis, and tools for
building rich probabilistic models may provide
some additional insight, assuming the challenges of
scale can be overcome. Culturally, applying these
methods to real data, and rewarding those who inno-
vate methodologically, may become more important.
We can look at the rise of bioinformatics as an inde-
pendent field with its own funding streams. Neu-
roscience needs strong neuroinformatics to make
sense of the emerging datasets. However, we can
not currently evaluate if better analysis techniques,
even with far more data, can figure out meaningful
models of the brain.

In the case of the processor, we really understand
how it works. We have a name for each of the mod-
ules on the chip and we know which area is covered
by each of them (fig 13a). Moreover, for each of
these modules we know how its outputs depend on

Figure 13: Understanding the processor. (A) For the proces-
sor we know which part of the the chip is responsible for which
function. We know that these are meaningful because the de-
signers told us so. And for each of these modules we know how
the outputs depend on the inputs. (B) For the brain, it is harder
to be sure. The Felleman and vanEssen [52] Diagram shows
a flow chart and areas that are estimated based on anatomical
concerns. However, there is extensive debate about the ideal way
of dividing the brain into areas. Moreover, we currently have
little of an understanding how each area’s outputs depend on its
inputs.
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its inputs and many students of electrical engineer-
ing would know multiple ways of implementing the
same function. In the case of the brain, we also have
a way of dividing it into regions (fig 13b). However,
we only use anatomy to divide into modules and
even among specialists there is a lot of disagreement
about the division. Most importantly though, we do
not generally know how the output relates to the
inputs. As we reviewed in this paper, we may even
want to be careful about the conclusions about the
modules that neuroscience has drawn so far, after
all, much of our insights come from small datasets,
with analysis methods that make questionable as-
sumptions.

There are other computing systems that scientists
are trying to reverse engineer. One particularly rele-
vant one are artificial neural networks. A plethora of
methods are being developed to ask how they work.
This includes ways of letting the networks paint im-
ages [53] and ways of plotting the optimal stimuli for
various areas [54]. While progress has been made
on understanding the mechanisms and architecture
for networks performing image classification, more
complex systems are still completely opaque [55].
Thus a true understanding even for these compara-
tively simple, human-engineered systems remains
elusive, and sometimes they can even surprise us by
having truly surprising properties [56]. The brain
is clearly far more complicated and our difficulty at
understanding deep learning may suggest that the
brain is hard to understand if it uses anything like
gradient descent on a cost function.

We also want to suggest that it may be an impor-
tant intermediate step for neuroscience to develop
methods that allow understanding a processor. Be-
cause they can be simulated in any computer and
arbitrarily perturbed, they are a great testbed to ask
how useful the methods are that we are using in
neuroscience on a daily basis. Scientific fields often
work well in situations where we can measure how
well a project is doing. In the case of processors
we know their function and we can know if our
algorithms discover it. Unless our methods can deal
with a simple processor, how could we expect it to
work on our own brain?

Netlist acquisition

All acquisition and development of the initial simu-
lation was performed in James [11]. 200◦ F sulfuric
acid was used to decap multiple 6502D ICs. Nikon
LV150n and Nikon Optiphot 220 light microscopes
were used to capture 72 tiled visible-light images

of the die, resulting in 342 Mpix of data. Computa-
tional methods and human manual annotation used
developed to reconstruct the metal, polysilicon, via,
and interconnect layers. 3510 active enhancement-
mode transistors were captured this way. The au-
thors inferred 1018 depletion-mode transistors (serv-
ing as pullups) from the circuit topology as they
were unable to capture the depletion mask layer.

Simulation and behaviors

An optimized C++ simulator was constructed to en-
able simulation at the rate of 1000 processor ticks per
wallclock second. We evaluated the four provided
ROMs (Donkey Kong, Space Invaders, Pitfall, and
Asteroids) ultimately choosing the first three as they
reliably drove the TIA and subsequently produced
image frames. 10 seconds of behavior were simu-
lated for each game, resulting in over 250 frames per
game.

Lesion studies

Whole-circuit simulation enables high-throughput
targeted manipulation of the underlying circuit. We
systematically perturb each transistor in the proces-
sor by forcing its input high, thus leaving it in an
“on” state. We measure the impact of a lesion by
whether or not the system advances far enough to
draw the first frame of the game. We identitifed 1560
transistors which were lethal across all games, 200
transistors which were lethal across two games, and
186 transistors which were lethal for a single game.
We plot those single-behavior lesion transistors by
game in figure 4.

Spiking

We chose to focus on transistor switching as this is
seemed the closest in spirit to discrete action poten-
tials of the sort readily available to neuroscientific
analysis. The alternative, performing analysis with
the signals on internal wires, would be analogous
to measuring transmembrane voltage. Rasters were
plotted from 10 example transistors which showed
sufficient variance in spiking rate.

Tuning curves

We compute luminance from the RGB output value
of the simulator for each output pixel to the TIA. We
then look at the transistor rasters and sum activity
for 100 previous timesteps and call this the “mean
rate”. For each transistor we then compute a tuning
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curve of mean rate versus luminance, normalized by
the frequency of occurrence of that luminance value.
Note that each game outputs only a small number of
discrete colors and thus discrete luminance values.
We used SI as it gave the most equal sampling of
luminance space. We then evaluate the degree of fit
to a unimodial Gaussian for each resulting tuning
curve and classify tuning curves by eye into simple
and complex responses, of which figure 4 contains
representative examples.

Spike-word analysis

For the SI behavior we took spiking activity from
the first 100ms of SI and performed spike word
analysis on a random subset of 64 transistors close
to the mean firing rate of all 3510.

Local Field Potential

To derive “local field potentials” we spatially in-
tegrate transistor switching over a region with a
Gaussian weighting of σ = 500µm and low-pass
filter the result using a window with a width of 4
timesteps.

We compute periodograms using Welch’s method
with 256-sample long windows with no overlap and
a Hanning window.

Granger Causality

We adopt methods for assessing conditional Granger
causality as outlined in [57]. We take the LFP gen-
erated using methods in section and create 100
1ms-long trials for each behavioral experiment. We
then compute the conditional Granger causality for
model orders ranging from 1 to 31. We compute
BIC for all behaviors and select a model order of 20
as this is where BIC plateaus.

Whole brain recording

The transistor switching state for the first 106 times-
tamps for each behavioral state is acquired, and
binned in 100-timestep increments. The activity of
each transistor is converted into a z-score by sub-
tracting mean and normalizing to unit variance.

Dimensionality Reduction

We perform dimensionality reduction on the first
100,000 timesteps of the 3510-element transistor state
vectors for each behavioral condition. We use non-
negative matrix factorization from Scikit-Learn [58]

initialized via nonnegative double singular value de-
composition solved via coordinate descent, as is the
default. We use a latent dimensionality of 6 as it was
found by hand to provide the most interpretable re-
sults. When plotting, the intensity of each transistor
in a latent dimension is indicated by the saturation
and size of point.

To interpret the latent structure we first compute
the signed correlation between the latent dimension
and each of the 25 known signals. We show particu-
larly interpretable results.
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