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Abstract In gene regulatory circuits, the expression of individual
genes is commonly modulated by a set of regulating gene products,
which bind to a geneʼs cis-regulatory region. This region encodes an
input-output function, referred to as signal-integration logic, that maps
a specific combination of regulatory signals (inputs) to a particular
expression state (output) of a gene. The space of all possible signal-
integration functions is vast and the mapping from input to output
is many-to-one: For the same set of inputs, many functions (genotypes)
yield the same expression output (phenotype). Here, we exhaustively
enumerate the set of signal-integration functions that yield identical gene
expression patterns within a computational model of gene regulatory
circuits. Our goal is to characterize the relationship between robustness
and evolvability in the signal-integration space of regulatory circuits, and
to understand how these properties vary between the genotypic and
phenotypic scales. Among other results, we find that the distributions
of genotypic robustness are skewed, so that the majority of signal-
integration functions are robust to perturbation. We show that the
connected set of genotypes that make up a given phenotype are
constrained to specific regions of the space of all possible signal-
integration functions, but that as the distance between genotypes
increases, so does their capacity for unique innovations. In addition,
we find that robust phenotypes are (i) evolvable, (ii) easily identified
by random mutation, and (iii) mutationally biased toward other robust
phenotypes. We explore the implications of these latter observations
for mutation-based evolution by conducting random walks between
randomly chosen source and target phenotypes. We demonstrate that
the time required to identify the target phenotype is independent of
the properties of the source phenotype.
1 Introduction
Living organisms exhibit two seemingly paradoxical properties: They are robust to genetic change,
yet highly evolvable [35]. These properties appear contradictory, because the former requires that
genetic alterations leave the phenotype intact, while the latter requires that these alterations explore
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new phenotypes. Despite this apparent contradiction, several empirical analyses of living systems,
particularly at the molecular scale, have revealed that robustness often facilitates evolvability [5, 13,
16, 19]. A case in point is cytochrome P450 BM3. In this protein, both thermodynamic stability and
mutational robustness—defined as the tendency of a protein to adopt its native structure in the face of
mutation—increase the proteinʼs propensity to evolve novel catalytic functions [5]. In other, unrelated
enzymes, the ability to evolve new functions is facilitated by the ability of the enzymeʼs native functions
to tolerate mutations [1]. More generally, the enzymatic diversity of proteins increases with their
mutational robustness. This indicates that robust proteins have acquired functional diversity in their
evolutionary history—they are more evolvable [13].

To clarify the relationship between robustness and evolvability, several theoretical models have been
proposed (e.g., [11, 28, 36]). A common feature of these models is the concept of a genotype network
(a.k.a. neutral network). In such a network, each node represents a genotype. Edges connect genotypes
that share the same phenotype and can be interconverted via single mutational events (Figure 1A). In
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Figure 1. (A) The space of all possible genotypes can be represented as a network, where vertices correspond to geno
types and edges connect genotypes that can be interconverted through point mutations. A genotype network is a con
nected subgraph in which each genotype yields the same phenotype (denoted by vertex color ). Thus, all point mutations
within a genotype network leave the phenotype unchanged. (B) When perturbations correspond to the addition or dele
tion of regulatory interactions, two RBCs are connected in a genotype network if they share the same gene expression
pattern (phenotype), but differ in a single regulatory interaction. (C) When perturbations correspond to changes in the
signal-integration logic, two RBCs are connected in a genotype network if they share the same phenotype, but differ in a
single bit of their rule vector. This perturbation is analogous to a change in the affinity or position of a transcription factor
binding site in the cis-regulatory region that leaves the gene expression pattern unchanged. The genotype networks shown
in (B,C) are part of the larger (hypothetical) genotype space shown in (A). The number of neighbors per vertex is inten
tionally reduced for visual clarity.
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the case of RNA secondary-structure phenotypes, for example, nodes represent RNA sequences and
two nodes are connected if their corresponding sequences confer the same minimum-free-energy sec-
ondary structure, yet differ by a single nucleotide [33]. Robust phenotypes have large genotype networks
[36]. Phenotypic robustness confers evolvability because a population can diffuse neutrally throughout
the genotype network [16, 18] and build up genetic diversity, which allows access to novel phenotypes
through non-neutral point mutations into adjacent genotype networks [36].

Genotype networks have been used to explore the relationship between robustness and evolvability
in a variety of biological systems, ranging from the molecular [8, 13, 14, 33, 37] to the cellular level [3, 6,
7, 27]. At the level of proteins and their three-dimensional structure phenotypes, for example, a geno-
type network is made up of all amino acid sequences that fold into the same structure and that can be
reached via single amino acid substitutions [13]. Robust proteins, which are commonly referred to as
designable [24], have large genotype networks and exhibit an enhanced capacity for functional inno-
vation [13]. This is a consequence of the arrangement of protein functions in sequence space, where
distant regions of a genotype network provide access to different protein functions [14].

At higher levels of organization, the phenotype of interest is often a gene expression pattern. Such
a pattern is produced by a gene regulatory network, which consists of gene products that activate and
inhibit one anotherʼs expression. Gene expression is controlled by a geneʼs cis-regulatory region on
DNA (Figure 2A), which can be thought of as performing a computation (Figure 2B), using the reg-
ulating gene products as inputs. The regulatory program that encodes this computation is referred to as
signal-integration logic. It is specified in the networkʼs (regulatory) genotype, which comprises the cod-
ing regions and the cis-regulatory regions of the networkʼs genes.

Previous studies of the robustness and evolvability of gene regulatory networks have focused on
genetic perturbations that alter network structure by adding or deleting regulatory interactions [3, 6,
7, 27]. In this case, two gene regulatory networks are connected in a genotype network if they confer
Figure 2. (A) Schematic of genetic regulation, where gene products a and b serve as regulatory inputs, attaching to their
respective binding sites (gray shaded boxes) in the cis-regulatory region of gene c to influence its expression. The input-
output function encoded in this regulatory region is called signal-integration logic and can be modeled as (B) a discrete
function that explicitly maps all of the 2z input-output combinations of a z-input function. Here, z = 2. (C) All inter-
actions between gene products a, b, and c can be represented as a random Boolean circuit (RBC) with N = 3 nodes. In
this example circuit, gene product c possesses the same regulatory inputs and signal-integration logic as in (A), to clearly
depict how the RBC abstraction captures genetic regulation. (D) The signal-integration logic of every node in the RBC can
be simultaneously represented with a single rule vector by concatenating the rightmost columns of each nodeʼs lookup
table. (E) The dynamics of the RBC begin with an initial state (e.g.,〈011〉) and eventually settle into an attractor (gray
shaded region).
Artificial Life Volume 20, Number 1 113
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the same gene expression pattern, yet differ in a single regulatory interaction (Figure 1B). The corre-
sponding genotype network is therefore a “network of networks” [7]. These analyses have revealed
several general properties of the genotypes and phenotypes of gene regulatory networks. First, a geno-
typeʼs capacity to bring forth new gene expression phenotypes through genetic change is dependent
upon its position in a genotype network [6]. Second, the robustness of a genotype to mutation varies
across a genotype network, so that some genotypes are vastly more robust than others [7], implying
that genotypic robustness is itself an evolvable property [27]. Third, phenotypes have vast genotype
networks that extend throughout the space of all possible genotypes [6, 27]; and fourth, highly robust
phenotypes are often highly evolvable [3, 6].

While these studies have helped to elucidate the relationship between robustness and evolvability
in gene regulatory networks, they are limited by their assumption that genetic perturbations primarily
affect network structure. It is well known that the presence or absence of regulatory interactions is not
the only determining factor of gene expression patterns [17, 21, 26, 34]. Specifically, by altering the
arrangement of promoters and transcription factor binding sites (Figure 2A, shaded boxes) in a geneʼs
cis-regulatory region, the signal-integration logic of gene regulation can be dramatically influenced. For
example, by rearranging the location of transcription start sites in the promoter region of a reporter
gene in the galactose network of Escherichia coli, 12 of the 16 possible Boolean input-output mappings
can be realized [17]. Thus, it is not only the structure of regulatory interactions that affects robustness
and evolvability, but also the logic of signal integration used in the cis-regulatory region of each gene.
When genetic perturbations correspond to changes in the signal-integration logic, two gene regulatory
networks are connected in the genotype network if they are topologically identical and confer the
same gene expression pattern, yet differ in a single element of their signal-integration logic (Figure 1C).
The extent to which genetic perturbations in the signal-integration logic of gene regulatory networks
affect robustness and evolvability remains largely unexplored.

We have recently begun to address this open question using computational models of small gene
regulatory circuits [30]. These circuits are ideal for such an investigation, because their genotype
networks are exhaustively enumerable, which allows for a full characterization of the relationship
between robustness and evolvability, at both the genotypic and phenotypic scales. In our previous
analysis, we focused on the relationship between these properties at the level of the phenotype only,
and investigated their influence on a simple, mutation-limited evolutionary process. Here, we extend
our previous analysis substantially and provide a detailed characterization of robustness and evolvability
at the level of the genotype. We address several fundamental questions concerning the structure of
genotype networks in signal-integration space. For instance, what is the distribution of genotypic ro-
bustness on a genotype network? Does this distribution differ from the case where genetic perturba-
tions affect circuit structure? Does the position of a genotype in genotype space affect its capacity for
evolutionary innovation (i.e., its ability to acquire novel phenotypes via genetic change)? How does the
robustness of a phenotype influence the robustness and evolvability of its underlying genotypes? Is
there a tradeoff between robustness and evolvability at the level of the phenotype? Are robust
phenotypes mutationally biased toward one another? If so, how does this influence mutation-based
evolution? After addressing these and other questions, we discuss the implications of our results and
present directions for future work.
2 Methods
2.1 Random Boolean Circuits
We use random Boolean circuits (RBCs) to model genetic regulation [22]. RBCs are composed of nodes
and directed edges (Figure 2C). Nodes represent gene products, and edges represent regulatory inter-
actions. Two nodes a and c are connected by a directed edge a→ c if the expression of gene c is regulated
by gene product a. Node states are binary, reflecting the presence (1) or absence (0) of a gene product,
and dynamic, so that the state of a node at time t+ 1 is dependent upon the states of its regulating nodes
at time t. This dependence is captured by a lookup table associated with each node, which explicitly
114 Artificial Life Volume 20, Number 1
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maps all possible combinations of regulatory input states to an output expression state. This lookup
table is analogous to the signal-integration logic encoded in cis-regulatory regions. The signal-integration
logic of all of the nodes in the network can be simultaneously represented using a single rule vector
(Figure 2D).

The dynamics of RBCs occur in discrete time with synchronous updating of node states (Figure 2E).
The dynamics begin at a prespecified initial state, which can be thought of as representing regula-
tory factors upstream of the circuit [6, 25]. The dynamics then unfold according to the circuitʼs
structure and signal-integration logic. Since the system is both finite and deterministic, its dynamics
eventually settle into an attractor [22], which represents the gene expression pattern, and is referred
to as the phenotype. We refer to the combination of circuit structure, rule vector, and initial state as an
instance of a RBC.

While simple, the Boolean abstraction has proven capable of precisely replicating specific proper-
ties of genetic regulation in natural systems. For example, variants of the model have emulated the
expression patterns of the fruit fly Drosophila melanogaster [2], the plant Arabidopsis thaliana [12], and the
yeast Saccharomyces pombe [9]. Due to their accuracy in capturing the dynamics of genetic regulation,
and because the signal-integration logic of each gene is explicitly represented, RBCs are ideal syn-
thetic systems for investigating the relationship between robustness and evolvability when genetic
perturbations correspond to changes in signal-integration logic.
2.2 Dynamical Regimes of RBCs
An important feature of RBCs is that they exhibit three dynamical regimes: ordered, critical, and
chaotic [22]. In the ordered regime, gene expression patterns (i.e., attractors) are relatively insensitive
to perturbations, while in the chaotic regime they are highly sensitive. The critical regime delineates
these two extremes. For randomly constructed circuits, as considered herein, the transitions between
regimes are controlled by two parameters: the average in-degree z and the probability U of gene
expression (i.e., the probability of observing a 1 in the rule vector ). Letting s = 2U(1 − U)z, the
RBC lies in the ordered regime when s < 1, the critical regime when s = 1, and the chaotic regime
when s > 1 [4, 32]. When there is an equal probability of observing a 0 or a 1 in the rule vector
(U = 0.5), the dynamical regime is determined solely by the average in-degree, with z < 2 yielding
the ordered regime, z = 2 the critical regime, and z > 2 the chaotic regime. In this study, we use
U = 0.5 and a fixed number of inputs per node, z ∈ {1, 2, 3}.
2.3 Genotype Networks
We refer to the signal-integration logic of a RBC, as represented by its rule vector (Figure 2D), as the
circuitʼs genotype. There are a total of 2L unique genotypes for a given combination of circuit structure
and initial state, where L = N2z. We refer to this set of genotypes as the genotype space, or equiva-
lently, as the signal-integration space. For the RBCs considered here, the size of the genotype space
ranges from 26 for the ordered regime to 224 for the chaotic regime.

These genotypes map to a significantly smaller set of phenotypes. This high level of redundancy is
a general feature of RBCs, and can be formalized using a genotype network, in which rule vectors are
represented as nodes, and edges connect rule vectors that differ by a single bit, yet yield the same gene
expression pattern (i.e., phenotype). Thus, we define a neutral point mutation as a single change to an
element of the genotype that does not lead to a change in phenotype. Such a mutation can be thought
of as a change in the affinity or position of a transcription factor binding site in the cis-regulatory
region that leaves the gene expression pattern unchanged. We characterize genotype networks using
an exhaustive breadth-first search, thus discovering all genotypes that yield the same phenotype and are
accessible via neutral point mutations, starting from the original genotype of an RBC instance. While it
may be possible that a phenotype consists of multiple disconnected genotype networks, our analysis
is focused on the connected component of the genotype network in which the RBC instance resides,
which we refer to as the focal genotype network.
Artificial Life Volume 20, Number 1 115



J. L. Payne et al. Robustness, Evolvability, and the Logic of Genetic Regulation
2.4 Observable Quantities
Several definitions of robustness and evolvability have been proposed, at both the genotypic and
phenotypic scales [3, 11, 27, 37]. Here, we define these terms as they are used in this study. Where
appropriate, we use superscripts to indicate whether a variable or function pertains to the genotypic (g)
or phenotypic (p) scale.

The quantity vxpyp captures the number of unique non-neutral point mutations to genotypes in the
focal genotype network of phenotype xp that lead to genotypes in a genotype network of phenotype
yp. We call phenotypes xp and yp adjacent if vxpyp > 0. By enumerating all of the genotype networks
that are adjacent to the focal genotype network of phenotype xp, we capture the mutational biases
between adjacent phenotypes; that is, we capture the propensity of the genotypes on one genotype
network to mutate into the genotypes on adjacent genotype networks. Our analysis therefore
completely characterizes both the focal genotype network and its adjacent genotype networks.
2.4.1 Robustness
We define the genotypic robustness Rg(xg) of a genotype xg as the proportion of its L possible point
mutations that do not lead to a change in phenotype. This quantity is normalized by L to provide a
measure that is independent of rule vector length. We use as a proxy for phenotypic robustness Rp(xp)
the proportion of signal-integration space that is occupied by the focal genotype network of phenotype
xp. This proxy captures the fraction of all genotypes that yield the same phenotype and that can also be
accessed via neutral point mutation from the rule vector of an RBC instance. This quantity is normalized
by 2L to provide a measure that is independent of the size of genotype space. Thus, we consider
phenotypic robustness to be the fractional size of the phenotypeʼs underlying focal genotype network.
2.4.2 Evolvability
Genotypic evolvability Eg(xg) is defined as the number of unique phenotypes that can be reached
through individual non-neutral point mutations to genotype xg. We define phenotypic evolvability
using two metrics. The first, Ep(xp), is simply the number of phenotypes that can be accessed through
non-neutral point mutations from the focal genotype network of phenotype xp [37]. The second, sp(xp),
captures the mutational biases that exist between the focal genotype network of phenotype xp and its
adjacent genotype networks [8]. Letting

fxpyp ¼ vxpypP
zp 6¼ xp vxpzp

ð1Þ

denote the fraction of non-neutral point mutations to genotypes on the focal genotype network of
phenotype xp that result in genotypes of phenotype yp, we define the evolvability sp(xp) of phenotype
xp as

spðxpÞ ¼ 1−
X

yp
f 2xpyp : ð2Þ

Since∑yp fxpyp
2 captures the probability that two randomly chosen non-neutral point mutations to geno-

types on the focal genotype network of phenotype xp result in genotypes with identical phenotypes, its
complement sp(xp) captures the probability that these same mutations result in genotypes with distinct
phenotypes. This metric takes on high values when a phenotype is adjacent to many other phenotypes
and its non-neutral point mutations are uniformly divided among these phenotypes. The metric takes
on low values when a phenotype is adjacent to only a few other phenotypes and its non-neutral point
mutations are biased toward a subset of these phenotypes.
116 Artificial Life Volume 20, Number 1
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2.4.3 Accessibility
In addition to measuring phenotypic evolvability, we also consider phenotypic accessibility,

ApðxpÞ ¼
X

yp
fypxp ; ð3Þ

which captures the propensity to mutate into the focal genotype network of phenotype xp [8]. This
metric takes on high values if the phenotypes adjacent to phenotype xp are mutationally biased toward
xp, and low values otherwise.

2.4.4 Adjacent Robustness
We measure the robustness of all phenotypes that are adjacent to the focal genotype network of
phenotype xp, in proportion to the probability that these phenotypes are encountered through a
randomly chosen, non-neutral point mutation from the focal genotype network of phenotype xp [8].
We refer to this quantity as adjacent robustness,

BpðxpÞ ¼
X

yp
fxpyp � Rpð ypÞ: ð4Þ

This metric takes on high values when a phenotype is mutationally biased toward robust phenotypes,
and low values otherwise.

2.4.5 Distance and Diversity
The genotypic distanceDg between two genotypes xg and yg is given by the normalized Hamming distance

Dgðxg; ygÞ ¼ L−1
XL

i¼1

y xgi ; y
g
ið Þ; ð5Þ

where y(xi
g, yi

g)= 1 if genotypes x g and yg differ at location i, and y(xi
g, yi

g)= 0 otherwise. This quantity is
normalized by L to provide a measure that is independent of rule vector length.

Following [6], the diversity Fp of the sets of phenotypes P(xg) and P( yg) that are accessible
through individual non-neutral point mutations to genotypes xg and yg of the same genotype network,
is calculated as

FpðPðxgÞ; Pð ygÞÞ ¼ 1 −
jPðxgÞ∩Pð ygÞj

jPðxgÞj þ jPð ygÞj− jPðxgÞ∩Pð ygÞj : ð6Þ

This measure captures the proportion of all phenotypes in P(xg) and P( yg) that are unique to either
P(xg) or P( yg). We refer to this measure as the diversity of adjacent phenotypes and consider it in the
context of genotypic distance. For example, if the genotypic distance Dg(xg, yg) between genotypes xg

and yg is large, but the diversity Fp(P(xg), P( yg)) of adjacent phenotypes is small, then the position of a
genotype in genotype space has little influence on which phenotypes are accessible via non-neutral point
mutation. In contrast, if both Dg(xg, yg) and Fp(P(xg), P( yg)) are large, then the position of a genotype
in genotype space has a strong influence on which phenotypes are accessible via non-neutral point muta-
tion. Note that xg and yg can be separated by any distance, so long as they reside on the same genotype
network. Note also that the phenotypes in P(xg) need not be adjacent to the phenotypes in P( yg).
Artificial Life Volume 20, Number 1 117
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2.5 Simulation Details and Data Analysis
For all RBC instances, the rule vector and initial state are generated at random with U = 0.5. The
circuit structure is also generated at random, but subject to the constraint that each node has exactly
z inputs. Self-loops are permitted, mimicking autoregulation. We separately consider RBCs in the
ordered, critical, and chaotic regimes by setting z = 1, 2, 3, respectively. The initial state and circuit
structure are held fixed for each RBC instance. To ensure that all of the genotype networks considered
in this study are amenable to exhaustive enumeration, we restrict our attention to RBCs with N = 3
nodes. While these RBCs are small, sensitivity analysis [10] confirms that they exhibit the same dynam-
ical regimes as larger networks, albeit with shorter attractors. To assess the strength and significance of
the trends in our data, we employ Pearsonʼs correlation coefficient.
3 Results
3.1 Characteristics of Genotype Networks
To describe the structure of signal-integration space in RBCs, we randomly generate 2,500 RBC
instances for each dynamical regime and exhaustively characterize the focal genotype networks of
their corresponding phenotypes, and the genotype networks of all adjacent phenotypes.

As the dynamical regime shifts from ordered to chaotic, the mean, variance, and maximum of the
distributions of genotypic robustness (Figure 3A–C) and genotypic evolvability (Figure 3D–F) increase.
For example, mean genotypic robustness increases by 72% and mean genotypic evolvability increases
by 114% as the dynamical regime transitions from ordered to chaotic. Genotypic evolvability and geno-
typic robustness are inversely correlated (Figure 3G), highlighting the fundamental tradeoff between
these two quantities. The strength of correlation is virtually indistinguishable between dynamical regimes
(z = 1: r = −0.97, p≪ 0.001; z = 2: r = −0.98, p≪ 0.001; z = 3: r = −0.98, p≪ 0.001), but the
slopes of these inverse relationships vary significantly. For instance, increasing the genotypic robustness
from 0.4 to 0.5 results in a 28% reduction in genotypic evolvability for chaotic RBCs, but only an 18%
reduction for ordered RBCs.

The range of phenotypic robustness Rp varies with dynamical regime: ordered RBCs span the
smallest range (3.12 × 10−2 ≤ Rp ≤ 1.25 × 10−1), critical RBCs span an intermediate range (4.88 ×
10−4 ≤ Rp ≤ 1.25 × 10−1), and chaotic RBCs span the largest range (4.77 × 10−7 ≤ Rp ≤ 1.25 × 10−1).
The maximum value of phenotypic robustness is independent of dynamical regime, and corresponds to
the case where the initial state is identical to the attractor, which thus comprises only a single state (i.e., it
118 Artificial Life Volume 20, Number 1
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Figure 3. Distributions of (A–C) genotypic robustness Rg and (D–F) genotypic evolvability Eg for each of the three
dynamical regimes: (A,D) ordered (z = 1), (B,E) critical (z = 2), and (C,F) chaotic (z = 3). Each distribution comprise
data from 2,500 genotype networks. (G) Average genotypic evolvability Eḡ as a function of average genotypic robustness
Rḡ, for each of the three dynamical regimes. Each data point represents an average across all genotypes in a geno
type network.
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is a fixed-point attractor ). In this case, there are no transient dynamics and each vertex is exposed to
only a single input value during the attractor, which means that only a single entry of each of the N
lookup tables is used. This implies that only N bits of the rule vector are accessed during the RBCʼs
dynamics, leaving L − N bits unused. Thus, the corresponding genotype network is of size 2L−N,
with phenotypic robustness Rmax

p = 2L−N/2L = 2−N = 1.25 × 10−1. The average phenotypic robust-
ness decreases from the ordered (Rp = 9.57 × 10−2) to the critical (Rp = 4.12 × 10−2) to the chaotic
(Rp = 3.02 × 10−2) regime.

Average genotypic robustness is positively correlated (Figure 4A; z= 1: r= 0.82, p≪ 0.01; z= 2:
r = 0.88, p ≪ 0.01; z = 3: r = 0.81, p ≪ 0.01), and average genotypic evolvability negatively corre-
lated (Figure 4B; z= 1: r= −0.83, p≪ 0.01; z= 2: r= −0.88, p≪ 0.01; z= 3: r= −0.81, p≪ 0.01),
with phenotypic robustness. The genotypes that map to a given phenotype therefore become more
robust and less evolvable as that phenotype becomes more robust. Averaging genotypic robustness
and genotypic evolvability across all 2,500 RBC instances per dynamical regime reveals a linear
increase in both quantities as z increases (Figure 4, insets). Thus, the genotypes of chaotic RBCs
are simultaneously more robust and more evolvable than the genotypes of critical or ordered RBCs,
on average.

To determine the distributions of genotypic distance between pairs of genotypes, we randomly
sample 10,000 pairs of genotypes from each of the 2,500 genotype networks per dynamical regime
(Figure 5A–C). We then compare these distributions with their corresponding null distributions,
which are computed by randomly sampling 25 million pairs of genotypes from the entirety of geno-
type space (i.e., without regard to phenotype) (Figure 5A–C, vertical lines). The average genotypic
distance between randomly sampled pairs of genotypes from focal genotype networks increases
from the ordered (Dḡ = 0.26) to the critical (Dḡ = 0.29) to the chaotic (Dḡ = 0.36) regime. However,
these averages are always significantly less than the averages of the corresponding null distributions
( p ≪ 0.001 for all z , Kolmogorov-Smirnov test), indicating that the connected components of geno-
type networks of signal-integration logic are constrained to specific regions of genotype space.

To understand how the position of a genotype in genotype space affects the variety of pheno-
types it may access via non-neutral mutation, we consider the diversity of adjacent phenotypes Fp as
a function of genotypic distance Dg (Figure 5D). For all three dynamical regimes, the diversity of
adjacent phenotypes increases as the distance between two genotypes on the same connected com-
ponents of a genotype network increases. In the critical regime, for example, 43% of the phenotypes
found within the 1-neighborhoods of genotypes separated by a distance of D = 0.08 are unique; for
D = 0.75, 95% are unique. Thus, the greater the distance between two genotypes, the greater the
Figure 4. (A) Average genotypic robustness Rḡ and (B) average genotypic evolvability Eḡ as a function of phenotypic
robustness Rp, for each of the three dynamical regimes: ordered (z = 1), critical (z = 2), and chaotic (z = 3). The insets
depict the corresponding averages across all 2,500 genotype networks, as a function of z. Lines are provided as a guide
for the eye.
Artificial Life Volume 20, Number 1 119
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difference between the two sets of phenotypes that may be encountered via non-neutral mutation.
Strikingly, 100% of the phenotypes found within the 1-neighborhoods of genotypes separated by a
distance D > 0.8 are unique in the chaotic regime. As expected, the average genotypic distance be-
tween randomly sampled genotypes increases as phenotypic robustness Rp increases (Figure 5E),
supporting the intuitive notion that larger genotype networks extend farther throughout genotype
space than smaller genotype networks.

Phenotypic evolvability Ep and phenotypic robustness Rp are positively correlated (Figure 6A),
and the strength of correlation increases from the ordered (r = 0.65, p ≪ 0.01) to the critical (r =
0.89, p ≪ 0.01) to the chaotic (r = 0.98, p ≪ 0.01) regime. This indicates that, in this system, no
tradeoff exists between phenotypic robustness and the number of phenotypes accessible via non-
neutral point mutations; the more robust the phenotype, the higher its evolvability Ep. The average
phenotypic evolvability Ep̄ increases faster than linearly with increasing z , indicating a rapid increase
in the number of adjacent phenotypes as the dynamical regime shifts from ordered to chaotic
(Figure 6A, inset).

When mutational biases between adjacent phenotypes are taken into account using sp,
a slightly different relationship is observed between phenotypic evolvability and phenotypic robust-
ness (Figure 6B). RBCs in the ordered regime exhibit a weak and insignificant correlation between
sp and Rp (r = 0.02, p = 0.41). In contrast, RBCs in the critical and chaotic regimes exhibit weak, but
significant correlations, with the strength of correlation increasing from the critical (r = 0.09, p ≪
0.01) to the chaotic regime (r = 0.42, p ≪ 0.01). The average evolvability sp̄ increases approximately
linearly as z increases (Figure 6B, inset). Thus, the average probability that two randomly chosen,
non-neutral point mutations lead to distinct phenotypes is only ≈15% higher in chaotic RBCs than
in ordered RBCs, despite the four-order-of-magnitude difference in the absolute number of adjacent
phenotypes (Figure 6A, inset).

Phenotypic accessibility Ap and phenotypic robustness Rp are positively correlated (Figure 6C),
with the strength of correlation again increasing from the ordered (r = 0.81, p ≪ 0.01) to the critical
(r = 0.93, p ≪ 0.01) to the chaotic (r = 0.98, p ≪ 0.01) regime. This implies that, for all three
dynamical regimes, random point mutations are more likely to lead to robust phenotypes than to
non-robust phenotypes. The average accessibility Ap̄ increases faster than linearly as z increases
(Figure 6C, inset), indicating a rapid increase in the relative ease with which phenotypes are found
by random mutation as the dynamical regime shifts from ordered to chaotic.

Adjacent robustness Bp and phenotypic robustness Rp are positively correlated, with the strength
of correlation decreasing from the ordered (r= 0.89, p≪ 0.01) to the critical (r= 0.64, p≪ 0.01) to
the chaotic regime (r = 0.35, p ≪ 0.01). This implies that non-neutral point mutations to genotypes
Figure 5. Distribution of the genotypic distance Dg between randomly sampled pairs of genotypes from focal genotype
networks in each of the three dynamical regimes: (A) ordered (z = 1), (B) critical (z = 2), and (C) chaotic (z = 3). The
dashed vertical lines represent one standard deviation from the mean of the corresponding null distribution (see text).
(D) Diversity of adjacent phenotypes Fp as a function of genotypic distance Dg. Data are offset in the horizontal dimen-
sion for visual clarity. Error bars denote one standard deviation from the mean. (E) Average genotypic distance Dḡ per
genotype network, as a function of phenotypic robustness Rp.
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within robust phenotypes often lead to other robust phenotypes, but that the strength of this ten-
dency weakens as RBCs approach the chaotic regime. The average adjacent robustness Bp̄ decreases
approximately linearly as z increases (Figure 6D, inset), indicating that the expected robustness of a
phenotype encountered via non-neutral point mutation decreases as the dynamical regime shifts
from ordered to chaotic.

Taken together, these results suggest that a series of random point mutations will tend toward pheno-
types of increased robustness (Figure 6D) and correspondingly increased evolvability (Figure 6A,B).
Further, the ease with which such a blind evolutionary process identifies an arbitrary phenotype should
increase with that phenotypeʼs robustness (Figure 6C) and as the dynamical regime shifts from ordered
to critical to chaotic (Figure 6C, inset).
3.2 Random Walks through Signal-Integration Space
To investigate how phenotypic robustness, evolvability, and accessibility influence blind, mutation-
based evolution, we conduct an ensemble of random walks. For each dynamical regime, we randomly
generate 1,000 RBC instances and identify the phenotype of each instance as a source phenotype. For
each instance, we then sample the genotype space at random until we discover a genotype that yields a
different phenotype from the source phenotype, and we identify this as the target phenotype. For
each pair of source and target phenotypes, we then perform a random walk, starting from the in-
stanceʼs genotype and ending when the random walk reaches any genotype in the target phenotype.
Each step in the random walk corresponds to a single point mutation to the genotype. We record the
Figure 6. Phenotypic evolvabilities (A) Ep, (B) sp; (C) accessibility Ap; and (D) adjacent robustness Bp as functions of
phenotypic robustness Rp for each of the three dynamical regimes: ordered (z = 1), critical (z = 2), and chaotic (z = 3).
Each data point represents one of 2,500 RBC instances for each dynamical regime. The insets depict the corresponding
averages, as functions of z. Lines are provided as a guide for the eye.
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number of steps, S, required to reach the target phenotype, which we normalize by the size of the
signal-integration space 2L, and refer to as the waiting time T = S/2L.

The waiting time T decreases faster than linearly as z increases (Figure 7A, inset). For all three
dynamical regimes, T is strongly negatively correlated with the accessibility A of the target phenotype
(Figure 7A), and the strength of correlation increases from the ordered (r = −0.41, p ≪ 0.01) to the
critical (r= −0.67, p≪ 0.01) to the chaotic (r= −0.82, p≪ 0.01) regime. In contrast, the correlation
between the waiting time T and the evolvability Ep of the source phenotype is weak and insignificant
(z = 1: r = −0.03, p = 0.38; z = 2: r = 0.01, p = 0.82; z = 3: r = −0.02, p = 0.56) (Figure 7B). We
observed similarly weak and insignificant correlations between T and other characteristics of the
source phenotype, such as sp, Ap, and Bp (data not shown). These results indicate that the time re-
quired for a blind evolutionary search to identify a target phenotype is independent of the phenotypic
properties of the starting point and solely dependent upon the phenotypic properties of the target.

4 Discussion

In this study, we have extended our previous analysis [30] of genotype networks in the signal-integration
space of random Boolean circuits (RBCs). While our earlier work was focused exclusively on the
properties of phenotypes, we now additionally provide a detailed description of the properties of geno-
types. Specifically, we have characterized the distributions of genotypic robustness Rg (Figure 3A–C)
and genotypic evolvability Eg (Figure 3D–F), revealing distributions that are skewed toward geno-
types of high robustness and low evolvability, which increase in both mean and variance as the
dynamical regime shifts toward chaos. This variability implies that genotypic robustness and geno-
typic evolvability are themselves evolvable properties in RBCs—that by gradually altering signal-
integration logic via point mutation, an evolutionary process can navigate through signal-integration
space toward areas of either high genotypic robustness or high genotypic evolvability, without pheno-
typic modification.

When genetic perturbations correspond to changes in circuit structure, rather than to changes in
signal-integration logic, the distribution of genotypic robustness is skewed toward genotypes of low
robustness [7]. This result contrasts with our observations, and underscores the sensitivity of the struc-
ture of genotype networks to the form of genetic perturbation under consideration. Regardless of the
form of genetic perturbation, it is not possible to simultaneously maximize genotypic robustness and
genotypic evolvability (Figure 3G), due to the inherent tradeoff between these properties [37].
Figure 7. Waiting time of a random walk T = S/2L as a function of (A) the target phenotypeʼs accessibility Atarg
p and (B) the

source phenotypeʼs evolvability Esource
p , for each of the three dynamical regimes: ordered (z = 1), critical (z = 2), and

chaotic (z = 3). The inset in (A) depicts the average waiting time T as a function of z. Lines are provided as a guide for
the eye.
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We found a positive correlation between average genotypic robustness Rḡ and phenotypic robust-
ness Rp (Figure 4A), an intuitive observation given that the latter quantity is commonly defined via the
former [37]. In contrast, average genotypic evolvability Eḡ was negatively correlated with phenotypic
robustness Rp (Figure 4B), indicating that the individual genotypes that make up robust phenotypes
have a reduced capacity for innovation, relative to the genotypes of less robust phenotypes. Both the
average genotypic robustness Rḡ and the average genotypic evolvability Eḡ increased as the dynamical
regime shifted from ordered to chaotic (Figure 4, insets).

To understand how a genotypeʼs position in signal-integration space influences its capacity for
innovation, we analyzed the relationship between the genotypic distance Dg of randomly sampled
pairs of genotypes on the same genotype network, and the diversity of phenotypes Fp accessible via
non-neutral point mutation from these genotypes. We found a monotonic increase in Fp across the
full range of genotypic distances observed for each dynamical regime. This result contrasts again
with observations made in [6], where a strong statistical association was only found between these
quantities for low genotypic distance (Dg ≲ 0.2). Thus, large distances between genotypes in signal-
integration space may facilitate access to a greater diversity of phenotypes than the same genotypic
distances in the space of circuit structures.

We found a positive correlation between phenotypic robustness Rp and phenotypic evolvability,
as measured either by the absolute number of adjacent phenotypes, Ep (Figure 6A), or by the prob-
ability that two non-neutral point mutations lead to distinct phenotypes, sp (Figure 6B). Our results
corroborate the observation made in previous studies that the phenotypes of gene regulatory net-
works can simultaneously exhibit robustness and evolvability [3, 6, 7]. Further, our analyses extend
these previous studies by providing an explicit description of this relationship and by considering
genetic perturbations that alter the signal-integration logic encoded in cis-regulatory regions, instead
of genetic perturbations that alter circuit structure.

We also found a positive correlation between phenotypic robustness Rp and phenotypic accessi-
bility Ap (Figure 6C), a measure that captures the relative ease with which a phenotype can be iden-
tified by mutation-based evolution. This result supports the intuitive notion that phenotypes formed
by many genotypes are easier to find in blind evolutionary searches than phenotypes formed by few
genotypes. In addition, robust phenotypes are mutationally biased toward other robust phenotypes
(Figure 6D), indicating that blind evolutionary searches should encounter, at least on average, highly
robust phenotypes. This observation corroborates recent observations made in RNA systems [20],
where biological RNA structures were shown to have significantly larger genotype networks than
random RNA structures.

To understand how phenotypic robustness, evolvability, and accessibility in signal-integration
space influence mutation-based evolution, we considered an ensemble of random walks between
pairs of source and target phenotypes. We found that the number of random mutations required
to reach the target phenotype was entirely dependent upon its accessibility Atarg

p (Figure 7A) and
independent of any properties of the source phenotype (e.g., Figure 7B). This suggests that a ran-
dom walk through signal-integration space quickly loses any memory of its starting location. Con-
sequently, existing evolvability metrics cannot be expected to predict the duration of a random walk
between phenotypes. To overcome this problem, future work will seek to develop new phenotypic
evolvability metrics that take into consideration the global structure of genotype space, as opposed
to only considering the immediate adjacency of genotype networks.

Most of our results are consistent with those found in RNA systems [8, 37]. However, there is
one difference worth emphasizing: The correlation between phenotypic robustness Rp and pheno-
typic evolvability sp is negative in RNA [8]. Since the relationship between Rp and adjacent robust-
ness Bp is positive in RNA, it has been suggested that robust phenotypes act as “evolutionary traps”
[8] (but see [37]). That is, random mutation may tend toward phenotypes of higher robustness,
which in turn may be less evolvable by this criterion, and therefore slow down evolutionary search.
Since we observed a positive correlation between (i) Rp and sp and between (ii) Rp and Bp, we con-
clude that robust phenotypes in the signal-integration space of RBCs are not evolutionary traps, but
instead may facilitate the discovery of novel phenotypes. Such contrasts between model systems
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underscore the fact that the relationships between robustness, evolvability, and accessibility are
system dependent.

Phenotypic evolvability increased monotonically as z increased (Figure 6A,B, insets) and the max-
imum achievable robustness was independent of z (Rmax = 2−N). Taken together, these results in-
dicate that robustness and evolvability can be simultaneously maximized in chaotic RBCs. This result
contrasts with previous analysis [3], which found robustness and evolvability to be simultaneously
maximized in critical RBCs. This discrepancy can be understood by considering the two primary
differences between the analyses. First, the analysis in [3] focused on genetic perturbations that
altered circuit structure (and consequently, in some cases, signal-integration logic), while we focused
solely on genetic perturbations that altered signal-integration logic. Second, and of greater impor-
tance, the measures of robustness and evolvability considered in [3] were not based on genotype
networks. Instead, robustness was defined as the ability of a single mutated genotype to maintain the
phenotypic landscape (i.e., the set of all phenotypes observed across all possible initial states), and
evolvability was defined as the capacity of the mutated genotype to expand the phenotypic landscape
(i.e., add new phenotypes to the set of existing phenotypes). Thus, the definitions of robustness and
evolvability used in [3] differed from ours, and were focused solely on the level of individual geno-
types and their immediate mutational neighbors. While these definitions are reasonable and insightful,
our departure from their use precludes any direct comparison between the two studies. That said, our
observation that the robustness and evolvability of chaotic RBCs, at both the genotypic and pheno-
typic scales, are higher than those of critical or ordered RBCs should be interpreted with caution. For
all dynamical regimes, robustness is maximal for fixed point attractors, and these occur with decreas-
ing frequency as the dynamical regime transitions from order to chaos (i.e., as z increases). Thus,
while it is only possible to simultaneously observe maximal robustness and maximal evolvability in
chaotic RBCs, this case represents the exception rather than the rule.

Future work will seek to understand how evolution navigates signal-integration space. Is it possible
for mutation and selection to identify the high-robustness, high-evolvability phenotypes of chaotic
RBCs? If so, can they outcompete critical and ordered RBCs in static [29] or dynamic [15] environ-
ments? How are these evolutionary outcomes affected by mutation rate [38] or recombination [25]?
Future research will also focus on larger systems, moving from an analysis of small circuits to large
networks. To accomplish this, Monte Carlo sampling methods will be required [20], as the increased
size of the signal-integration space will prohibit the exhaustive enumeration of genotype networks. In
addition, future work will seek to understand the influence of both canalyzing functions [23] and the
probability of gene expression on the size and structure of genotype networks. These directions,
among others (e.g., [31]), will lead to a more thorough theoretical understanding of how the genetic
malleability of cis-regulatory DNA can influence evolutionary processes.
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