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Abstract. The power of any kind of network approach lies in the ability to simplify a complex system so
that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more
information than in a simple graph of only nodes and links. Adding information about times of interactions
can make predictions and mechanistic understanding more accurate. The drawback, however, is that there
are not so many methods available, partly because temporal networks is a relatively young field, partly
because it more difficult to develop such methods compared to for static networks. In this colloquium, we
review the methods to analyze and model temporal networks and processes taking place on them, focusing
mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social
networks; information packets in computer networks; various types of signaling in biology, and more. We
also discuss future directions.

PACS. 89.75.Hc Networks and genealogical trees – 02.10.Ox Combinatorics; Graph theory – 89.70.-a
Information and communication theory

1 Introduction

To understand how large connected systems works, one
needs to zoom out and view them from a distance. In
other words, one needs a principled, consistent way of dis-
carding irrelevant information. A common way of doing
this is to represent the system as a network, where nodes
are connected if they interact. For many systems one have
more information that just about who interacts. Includ-
ing that information into a temporal network, of course,
goes against the idea of simplifying the system. Some-
times, however, it could be worth the effort in terms of
increased accuracy of predictions, increased mechanistic
understanding, etc. The drawback is that many of the
methods and models developed for static networks could
be inapplicable or could need non-trivial generalizations.

Introducing temporal networks like above, as an exten-
sion of static networks is natural. After all, they are based
on a mathematical structure that links entities pairwise
(only that they also encode the time of the interaction).
However, there are surprisingly deep differences, both in
the history of the fields, the methods used and the ques-
tions asked. For static networks [207,13], many of the cen-
tral concepts were developed to study social networks—
centrality measures, community detection, similarity mea-
sures, etc. all come from network sociology. As more dis-
ciplines came to embrace networks, these concepts were
either reinvented or adopted from social network stud-
ies [308]. In a similar fashion, computer science pioneered
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temporal network theory. Still today, researchers redis-
cover the ideas Leslie Lamport and others used in the
1970’s to build a theory of distributed computing [160].

At a very fundamental level, the mathematics of tem-
poral and static networks differ. We will refer to the basic
unit of interaction in a temporal network as a contact.
It captures information about a pair of nodes interacting
and the time of the interaction. A contact is the closest
extension of a link in static networks (but we will reserve
link for a static relationship between two nodes—usually
that they have one or more contacts). Being connected is
a transitive mathematical relation, i.e. if (i, i′) and (i′, i′′)
are links then i is connected through a path. This is true
also for directed static networks, but does not have to
be true for contacts in a temporal network. As a corol-
lary, there is no way of representing a temporal network
as a simple graph without either losing information or
changing the meaning of the nodes. Because of this and
other reasons, the analysis of temporal networks has be-
come rather different than static networks. Some aspects
(like visualization) are much harder and less fruitful than
for temporal networks; other techniques (like randomized
null-models) are richer and more powerful for temporal
networks.

Temporal networks is a very interdisciplinary field. Com-
puter scientists, physicists, mathematicians, engineers, so-
cial scientists, medical researchers and the occasional bi-
ologist all helped shape it to what it is. The problems ad-
dressed reflect this diversity. They range from classic com-
puter science questions (like constrained optimization [187],
the traveling salesman problem [189] or constructing min-
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imal spanning trees [115]) to physics-influenced papers
about phase transitions [229]. They cover systems from
cattle in farms [42] to citations between scientific papers [49].
This diversity has boosted the development and one may
wonder how many other disciplines that reached matu-
rity this fast. The flip-side is that many concepts have
been rediscovered, or developed in parallel. No wonder
perhaps, the terminology is in disarray. Even the topic of
the field itself goes under many names—time-varying net-
works, dynamic networks and temporal graphs. Preparing
this colloquium paper, we planned to make a glossary to
translate between papers, but soon we came to realize that
it is better not to lead the reader into false security. Just
be aware that when you see a paper, for example, “tempo-
ral distance” it could mean at least three different things,
and look up the definitions paper by paper. We will try
to keep the terminology from Ref. [110] as much as possi-
ble, including that our default type of temporal network is
a stream of instantaneous contacts between two nodes in
discrete time. The second confusing situation (that we, on
the other hand, will try to sort out) is that there are subtly
different ways of thinking of temporal networks—are they
streams of contacts or static links that are occasionally
active? These mental pictures could be mathematically
equivalent but still shape the research profoundly.

In this colloquium, we will give a general introduc-
tion to temporal networks with an overview of the meth-
ods, systems modeled and questions addressed. Specifi-
cally, we focus on the development after our review paper
Ref. [110]. We do not cover studies of network evolution
(where the network is well-approximated as static for dy-
namic systems confined to it) or algorithmic papers that
do not aim at understanding real systems. We will not dis-
cuss adaptive networks [86,63,307] much either. These are
networked systems with a feedback between the topology
and a dynamic system on the network. They differs from
temporal networks by the time of events being of subor-
dinate importance to topology. In practice temporal net-
work studies have a stronger connection to empirical data
and adaptive network papers are mostly purely modeling
studies.

2 Systems that can be modeled as temporal
networks

In this section, we will present the systems that people
have modeled as temporal networks. There are probably
many systems that will be added to this list in the near
future. In general, any system with pairwise interactions
and information about time could be modeled as a tem-
poral network. Simply speaking, for such modeling to be
practically useful, there should be some structure in both
time and network topology that affects dynamic systems
on the network. This is usually equivalent to saying that
the time scale of the dynamics of the network should not
be too far from the time scale of the dynamic system.

2.1 Human proximity networks

One of the most well-studied type of temporal networks
(but still far from fully understood). Is that of human
proximity networks. These are networks that record when
two people have been close to each other in time and space.
Researchers have been very creative to measure this type
of interactions. The highest resolution data we are aware
of comes from radio-frequency identification (RFID) [16,
17,137,40,216,297,117,298,305] or infrared [285] sensors
that can measure when people are within a few meters
apart and facing each other. Typically one filters out very
brief contacts, so the remaining contacts capture people
either in a face-to-face conversation or in a crowd or gath-
ering of some kind. WiFi [255,293,112] or Bluetooth [277,
263,276,225,262] sensors give almost the same resolution
(with a few meters lower positional accuracy but worse
angular resolution). Of these references, Refs. [40,277] are
probably the most practically useful for those wanting to
set up their own studies. Zhang et al. [327] reviews many
aspects of temporal networks of human proximity.

The drawback with the above type of high-resolution
data sets is that such studies are time consuming and
costly. To sample larger populations, one need to give up
the precision. One example of such include the studies of
Zhang, Li et al. [322,324] of people logged onto a cam-
pus WiFi networks (where a contact is recorded if two
persons are connected to the same WiFI router at the
same time). Similarly Yoneki, Hui and Crowcroft [317]
use a network of people found to be close in space and
time by stationary scanners for Bluetooth hardware ad-
dresses. In another large-scale low-resolution study Sun
et al. [280] study commuters in Singapore. Here contacts
were recorded for passengers on the same bus. Kim, Lee
and Shroff [141] use a network of spatiotemporal proxim-
ity of taxis in Shanghai (probably not so interesting as far
as human-to-human spreading or diffusion processes goes,
but perhaps for other types of information spreading).

A special type of human proximity networks that have
got much attention is patient-referral networks, i.e. how
patients are transferred between wards of a hospital sys-
tem. Ref. [168] was the first such study, to our knowledge,
studying 295,108 Swedish patients over two years. This pa-
per discusses how to best reduce the temporal network to
a static network (more about this in Sec. 3.2.3). Walker et
al. [306] study the spread of C. difficile among 166,542 pa-
tients for 2.5 years. Donker et al. [57] study a one-year data
set of 1,676,704 patients in the Netherlands that they, for
privacy reasons, reduce to a metapopulation model. There
are also smaller-scale, higher-quality studies using sensors
rather than healthcare records, as mentioned above [298,
305,112].

Yet another kind of human proximity network (per-
haps so different that it needs a category of its own) are
networks of sexual contacts. These have the same quality
vs. quantity problem as mentioned before. Classic sexual
network studies like Refs. [231,94] do not have the time of
the contacts. The only large-scale temporal network of sex-
ual contacts is the prostitution data of Rocha et al. [246]
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where the sexual contacts are self-reported by Brazilian
sex buyers at a web community.

Several proximity networks are publicly available (ana-
lyzing these is probably the best way to get started in tem-
poral network research). See the supplementary material
in Refs. [255,247] and http://www.sociopatterns.org/.

2.2 Animal proximity networks

Researchers have not only been interested in the temporal
proximity networks of humans. There is a relatively large
number of studies of temporal networks of animals. Mostly
populations of livestock modeled either as a metapopula-
tion networks (where one farm is one node and a transport
between two farms is a directed contact), or as a temporal
network of individuals where a contact represents being at
the same farm at the same time. Livestock here could re-
fer to either cattle [72,76,262,296,42] or swine [147]. Most
such networks are inferred by the records of the farms, and
regulating authorities, but Ref. [42] use RFID devices at-
tached to the ears of calves. Not only domesticated, but
also wild animals have been studied—zebras [156,278] and
capuchin monkeys [52] by GPS traces, and ants [41] by
visual observation. Psorakis et al. [233] study networks of
great tits from foraging records.

2.3 Human communication

Temporal networks of human communication maybe needs
no further introduction as another Eur. Phys. J. B col-
loquium covers these [258]. They are together with prox-
imity networks the largest class of systems modeled as
temporal networks. A typical kind of such data comes
from call-data records of mobile phone operators [166,151,
143,132,149,195,194,196,121]. These register who called
whom, or who sent text messages to whom, typically re-
stricted to one operator in one country. Another type of
communication networks are e-mails. These data sets have
been sampled from the email accounts of a group of peo-
ple. When using this data to create a static network the
boundary condition is major problem—should one include
e-mails outside of the group [61] or not [62]? This is per-
haps an even larger problem for temporal-network studies
of large social media platforms such as Twitter [67,251,
256]. For some temporal network studies focusing on in-
dividuals, this becomes less of a problem, since one have
all actions recorded of the sampled people [12]. The im-
mediate boundary problem more or less disappears if one
studies complete records of closed Internet communities or
social networking services [107,128,304,119,184,138], but
even for these cases the dynamics is of course also shaped
by events and communication outside of the system.

2.4 Collaboration networks

A well-studied system in static networks that is naturally
time resolved is collaboration networks. In these, a contact

represents that people do something together, but not nec-
essarily at the same place (like proximity networks). Sci-
entific collaborations are a particularly well studied topic,
especially for static networks. Pfitzner et al. [225] Moinet
et al. [197] is one exception in the temporal network liter-
ature, but note that early static network papers like [206]
also touch upon some temporal aspects (even though the
main question is why the static network of accumulated
contacts look like it does).

2.5 Citation networks

Another type of network that is well studied in the static
network literature is citation networks. Time puts a strong
constraint on the static structure of these networks in that
they have to be acyclic [129,316]. In other words, you have
to be able to order the nodes in such a way that all the
directed links between them point in one direction. They
are also special in the sense that all out-links of a node
(paper) happen simultaneously (when the paper is pub-
lished). Rosvall et al. [254,253] and Clough et al. [49] dis-
cuss temporal aspects of this type of data.

2.6 Economic networks

Economic networks are perhaps a bit understudied as tem-
poral networks. Petri and Expert studies a more than one
century long data set of trade between countries [224].
Kondor et al. [146] analyze Bitcoin transactions (with
more standard network approach than we discuss in this
paper, but the data itself is a temporal network). Tan et
al. [328] study a temporal network of credit card trans-
actions. Redmond and Cunningham investigate an online
site that administrates direct loans between the members.
Xin et al. [321] study temporal network data sets of the
ship chartering and build-to-order ship markets. Another
paper by Xin et al. [319] analyze the Chinese venture capi-
tal market. Popović et al. [227] consider networks of coun-
tries inferred from financial news and compare them to
correlation networks from time series of the price of credit
default swaps. In principle, many of the other network
data sets studied in the (static) network literature [39,
204] could be understood by temporal-network methods.

2.7 Brain networks

In neuroscience, networks have become a useful tool to
understand the organization function of the brain and how
different types of conditions alter the coupling between
different regions [217,269,15]. The most common type of
network is constructed from temporal correlations of the
oxygen levels as measured by fMRI scanning. Even though
fMRI has a temporal resolution of the shortest time scale
of neuronal activities, it has proven fruitful to study as a
temporal network [20,21,176].

https://www.sociopatterns.org/
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2.8 Travel and transportation networks

Networks of human transportation systems lends them-
selves well to a temporal-network modeling framework.
We already mentioned Sun et al.’s study of the bus trans-
portation in Singapore [280]. Scholtes et al. [262] and Ros-
vall et al. [254] study networks of airline connections. Scholtes
et al. [262] also study a temporal network of subway travel
in London. Kaluza et al. [125] investigate the network of
global ship transport. One could in principle let the nodes
represent vehicles instead of people (although we are not
aware of such studies). On a smaller scale, Borgnat et
al. [31] study a shared-bike system in a French city. In the
interface of transportation studies and ecology Banks et
al. [11] study how transportation networks help the mi-
gration of species.

2.9 Distributed computing

Many of the concepts that we discuss in this paper were,
as mentioned, first developed in the theory of distributed
computing systems [160,153]. After a slow start, the inter-
est in this area has increased a lot. One reason is the devel-
opment of cheap wireless devices, another is that there are
many theoretical challenges (especially when the units are
moving around in space or in and out of a network). The
goals for such systems are usually (quoting Michail [188])
“to compute (i.e. agree on) something useful or construct
a desired network or structure in such an adversarial set-
ting.” Another direction in this area is to determine the
condition for desirable properties to hold for a distributed
computing system under the dynamics (“churn”) of the
devices. These studies are to our knowledge all theoreti-
cal. It would be interesting to see more empirical temporal
network studies of distributed computing systems.

2.10 Ecological networks

In ecology, networks have mostly been used to capture in-
teractions between species [218,265]. Food webs, is a typi-
cal example of an antagonistic interaction between species,
describing what species that eats what other species. There
are also mutualistic interactions where both interacting
species benefit from the interaction (plants and pollina-
tors being a typical example [236]). Both these types of
networks change with the season (and also from longer-
term effects due to climate change etc.) and could there-
fore be studied with the methods described in this pa-
per. Another example of ecological networks that could
be, but to our knowledge has not yet been, studied are in-
terlinked habitats [186,98]—the underlying structure for
meta-community studies of the process of colonization and
extinction in networks of habitat patches. In a long term,
this network also changes in time. A third class of po-
tentially interesting networks in (behavioral) ecology are
networks of individual animals. This overlaps with the an-
imal proximity networks discussed above, but the interac-
tion could be more indirect [95]. An introduction of tem-

poral networks for ecologists and evolution theorists can
be found in Ref. [29].

2.11 Biological networks

In biology and the ‘omics there are also plenty of sys-
tems that could be modeled as temporal networks. Static
network modeling has mainly been applied to gene net-
works, protein-interaction networks and metabolic net-
works. Gene networks can capture many different types
of interactions—from regulatory networks (where a link
means that one gene activates or inhibits another), via
gene-fusion networks (of genes that can form hybrid genes),
to more abstract relationships between genes also includ-
ing information of their encoded proteins interact and
their distance to each other on the DNA [120]. Researchers
have studies some kind of temporal effects of all these
three levels of networked ‘omes, but it is fair to say adding
the dimension of time has been harder than for some of
the examples above. One cannot yet record when a reac-
tion happens in a metabolic network, at least on a large
scale, or when two proteins bind to each other. However,
with future improved technologies this could change.

We will list a few examples of network biology in-
cluding time in the modeling. For none of these a con-
tact is not as precisely recorded as e.g. human proximity
data. Kharchenko et al. [136] discuss the genetic control
of metabolism, but the temporal component comes from
modeling, not measurement. Gyurkó et al. [89] discuss the
use of networks of individual proteins to understand the
development of cancer. Taylor et al. [292] argue that tem-
poral reorganizations of the protein interaction network
(the network of proteins that do interact, not the network
of proteins that could interact) could predict and explain
the development of breast cancer. Luo et al. [174] pre-
dict essential proteins by temporal networks. Rigbolt et
al. [241] discuss temporal aspects of gene networks in cell
differentiation. As a final example, West et al. [312] in-
vestigate the use of a temporal network entropy [329] to
understand the evolution of cancer.

2.12 Other systems

The topics above are by no means all the possible temporal
networks to be studied. We believe the readers of this
paper are more imaginative that the author, so we will
not try much harder. To mention two more systems, in one
extreme Ronhovde et al. [252] study temporal networks of
glassy states in complex materials, in the other extreme
are narrative networks (telling a story about a complex,
interdependent set of events) [26,27].

3 Representations of temporal networks

One can incorporate information about the time of con-
tacts between pairs of nodes in many ways. Which way to
chose could depend of what one’s data mean, how accurate
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a

b

Fig. 1. Illustration of a main challenge for temporal networks.
One of the great benefits of static networks (a) is that they are
great to support discussions of how a system is connected, and
how dynamics on top of it behave. Temporal networks do not
have this graphical simplicity, and are thus much less intuitive
(b). Illustration: Mi Jin Lee.

it is, what type of process the temporal network supports,
etc. Furthermore, it reflects the way the researcher con-
ceptualizes her system, and is usually not well motivated
in papers, even though it hides many assumptions about
the data. In this section, we will discuss some general ways
of representing temporal networks that sometimes trans-
late to a graphical representation (Fig. 1) [22] or a data
structure, sometimes not.

3.1 Lossless representations

We borrow the word “lossless” from audio compression
to denote representations that can carry all information
about a temporal network. They are all theoretically equiv-
alent, but do shape the way to think about a temporal
network.

3.1.1 Contact sequences

Almost all empirical temporal-network data sets that we
have seen are of the form of lists of contacts, i.e. the two
node involved and the time of the interaction—either just
one time stamp (that also means that the time is dis-
cretized) or an interval (this case is sometimes called an
interval graph). This is a very easy and practical format
computationally—just a list of three or four columns—
nothing that would scare even an Excel-only user. Just as
good contact sequences are for computational purposes,
just as bad are they to think about the function of the
system or processes confined to the network. You would
never see a temporal network researcher jotting down a
contact sequence to discuss a new method. The reason is,
of course, that contact sequences lack any kind of visual
expression power.

3.1.2 Graph sequences or multilayer networks

Some authors present temporal networks as sequences of
static graphs [188,223,208], or, equivalently, layers in a
multilayer network [30,142,162]. Depending on the sys-
tem studied, this could be a very powerful way to think
about temporal network, simply because all the powerful
machinery (including excellent visualization tools) from
(static) network theory [207,13] could be brought into ac-
tion. In other words, for any discrete time step, one can
understand and characterize the network using network
theory and then couple the results for the sequence of
times in some way. For this to make sense, the tempo-
ral resolution has to be low. Examples (mentioned above)
when this could be fruitful include: ecological networks,
interlinked habitats, brain networks and global trade net-
works.

However, there are systems where graph sequences are
not a good idea. Simply speaking, these are cases where
the time resolution is high (or continuous) compared to
whatever dynamic system on the network one would like
to study, or when the time resolution is high and the con-
tacts are instantaneous. E-mail metadata usually have a
one-second time resolution, so a graph-sequence represen-
tation of an e-mail network (even a rather large one) would
look like: empty graph, empty graph, empty graph, empty
graph, graph with one link, empty graph, empty graph,
etc. (Fig. 2(e)). If we study a disease spreading on a hu-
man proximity network, then, even if the graphs of the se-
quence are non-trivial, it would probably be unreasonable
to assume an infection could spread through more than
one contact over a time step. In other words, the most
fundamental assumption of static networks—that being
indirectly connected (connected through a path of length
larger than one) is different from not being connected—
breaks down, so techniques from static network theory
cannot be applied directly to a graph of the sequence (or
a layer of a multilayer network) Fig. 2(e). There are sev-
eral ways proposed in the literature to get around this
issue, but thinking of the graphs of a graph sequence as
static networks could be misleading.
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Fig. 2. The figure illustrates five representations of the same temporal network (of the contact sequence type). Panel (a) shows
a node-centric time line, where a horizontal line represents a contact between two connected individual at the time given by
the x-axis. Panel (b) shows a time line of the contacts focusing on links (pairs of individuals). Panel (c) shows a time-stamp
decorated, aggregated graph. The numbers of the links denotes the contacts between the nodes. Panel (d) shows a time-node
graph (where one assumes spreading cannot occur across more than one contact per time step). Three of the 32 time nodes are
labeled. Panel (e) shows a graph sequence representation.

3.1.3 Dynamic networks

One pillar of network science is the modeling of emergent
properties of graphs. A canonical example is the Barabási-
Albert model [14], which shows how a microscopic mech-
anism in the network growth (preferential attachment)
can lead to a macroscopic property of the network struc-
ture (a power-law degree distribution). Other models (e.g.
Refs. [200,152]) allow nodes and links to disappear too. We
will call the idea of a system as a static network evolving
in time a dynamic network (we are well aware of the con-
fusion of terminology—sometimes what we call temporal
networks are called dynamic networks). Isn’t this situa-
tion just the same as any temporal network? To some
extent, the answer is like in the previous section—if the
dynamic systems on the network are faster than the con-
tact dynamics, and the network at any given moment of
time is non-trivial, then yes. However, there is also a sub-
tle difference of the research questions about them. For
dynamic networks, the focus is typically on one class of
networks (say protein interaction networks) and questions
concern the structure of this network class, how the struc-
ture has evolved and how it affects dynamic systems on
the network. Temporal networks are typically more data
oriented—researchers investigate a data set, its structures,
and how e.g. epidemic outbreaks would behave on it. Then
one asks how these observations generalize by comparing
results for different data sets. Perhaps, this slightly differ-
ent approach comes from that there are no semi-universal
structures in temporal networks that involve both the time
and topology (as opposed to scale-free degree distributions
in network theory [14,13] or bursty behavior of human ac-
tivity [12]).

3.1.4 Time-node graphs

Another way of representing temporal networks, akin to
multilayer networks, is to make a network of time nodes
(sometimes called the “static expansion” of a temporal
network [188])—representing the original node at a time.
This type of network can be practical since it is straight-
forward to apply static network methods also over the time
dimension [288,268,225]. Eventually one usually needs to
map the time nodes back to the original nodes; maybe one
exception could be a certain year’s edition of an annual
event (cf. “NetSci 2015”—a conference during which parts
of this paper was written). (A time-node representation of
our example network is shown in Fig. 2(d).)

3.1.5 Time series of contacts on a static graph

Contact sequences correspond, to some extent, to link lists
in static network (a 2×M matrix of the two nodes of every
link in the network; where M is the number of links). The
other important scalable data structure for static graphs—
adjacency lists (listing node-by-node all the neighbors of a
node)—corresponds to assigning a time series of contacts
to the links of a static graph. The advantage of thinking
about temporal networks in this way is primarily visual—
one can plot the underlying graph with all the powerful
graph layout algorithms designed for static networks, one
can even plot the time series of contacts as a time line. In
practice, this only works for very small temporal networks,
both because the underlying graph tend to be rather dense
in empirical data, and because there is little space to visu-
alize the contact time series (See Fig. 2(c) for an example.)
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3.1.6 Time-lines of contacts

Another, primarily visual, type of representation is a time
line of contacts. Graphically, one would let one dimension
represent time and one dimension the set of nodes. Then
one connects two nodes by a line at the times of their
contacts (Fig. 2(a)). The advantage with this representa-
tion is that the time-respecting paths (sequences of con-
tacts of increasing times) between nodes are very easy to
identify—these are all paths that does not turn backwards
in the time dimension. The disadvantage is, not surpris-
ingly, that such a plot gets unintelligible if the temporal
network has more than, say, 50 nodes. The visual informa-
tion that survives longest is the temporal one, so with 50
nodes, one may be able to spot structure in the overall ac-
tivity in the data, but not the structure of time-respecting
paths.

One can also use time-lines of contacts between pairs
of nodes, Fig. 2(b). This highlights the pairwise interac-
tions, but the visual information relating to the topology,
including the time-respecting paths is gone.

3.1.7 Adjacency tensors

Just like a static network can be represented as a binary
matrix, an adjacency matrix, a temporal network can be
represented as a binary tensor [74,73,295,311,59,92]. The
pros and cons are also the same—an adjacency tensor, as
a data structure, takes a lot of memory, but it allows for
tensor algebra and all the neat and compact formulas that
come with it. The memory problem can, in practice, be
even bigger than for static networks since many empiri-
cal data sets (as mentioned) are very sparse in the time
dimensions. It also shares some problems with the graph
sequences and dynamic graph pictures. Since the dynamic
system of interest may not be able to operate within the
graph of a time step, the adjacency tensor cannot func-
tion like an (unnormalized) Markov transition matrix. Yet
a complication is that time is directed, while many meth-
ods in tensor algebra assume indices could be relabeled
(i.e. time order broken). Finally, we note a visualization
method related to adjacency tensors—see Bach et al. [8].

3.1.8 Film clips

A natural way of thinking of temporal networks, especially
visually, is to show them time step by time step, i.e. as
a film clip [199,22,81]. The obvious disadvantage is that
one cannot see all the information at once. In developing
methods, we feel it is a major problem not to be able to,
for example, highlight a time-respecting path. To get a
feeling for the overall activity and complexity of the data,
however, it could be a useful approach.

3.2 Lossy representations

Now we turn to representations where some information of
the original temporal network (typically contact sequence)

1
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4

b

c

1
2
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Fig. 3. Panel (a) shows an example contact sequence (the
same as in Fig. 2). Panel (b) is the derived reachability graph
at t = 0. Panel (c) shows the time-windowed static graph from
contacts between t = 3 and t = 5. Panel (d) illustrates a link-
turnover graph where there is a link between two nodes if they
had a contact before and will have one again.

is lost. We still talk about these as representations, not
models, as the number of bits needed to encode them scale
linearly with the system size.

3.2.1 Weighted graphs

A natural way of simplifying a contact sequence is to con-
struct an link-weighted graph where the weight gives a
count of the number of contacts between two nodes. How
useful such a representation is depends on what dynamic
system one considers. Regarding random walks, Lambiotte
et al. write: “Contrary to standard procedures, the im-
portance of an link is in general not proportional to its
number of activations [. . . ], but to the probability that it
participates in the diffusive process.” [159] Of course it
might require simulations to calculate the probability of
participation, and one might have to settle for counting
the number of contacts for that reason. The quality of a
weight could be improved further if one knows when a dy-
namic phenomenon (e.g. a disease outbreak) starts. As an
intermediate step to creating simple graphs, Holme [103]
uses weighted graph obtained by, for ever contact between
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a node pair, summing an exponential weight∑
i

e−ti/τ (1)

(where ti is the time between the beginning of the spread-
ing and the i’th contact, and τ is a parameter that should
match the time scale of the dynamic process).

3.2.2 Reachability and influence graphs

A reachability graph is a directed, unweighted graph that
links i to j if there is a time-respecting path from i to
j [44,198,110,23,208,313]. Since the existence of time-
respecting paths depends on time, such a graph needs to
be a function of time. For many data sets that at any given
time are very sparse (like email or phone-call networks)
reachability graphs could be a good tool for visualiza-
tion. The problem with reachability graphs is rather that
they could be too dense—for our collection of temporal-
network data sets (the ones used in Refs. [106,108]), early
in the sampling period, the reachability graphs have 30-
100% of the maximum number N(N−1) of directed links.
In our example case, Fig. 3(a) the reachability network is
very large at the beginning, see Fig. 3(b) with ten links
present out of twelve possible. To remedy this some stud-
ies put a higher requirement on a directed link than just
one time-respecting path, and defines directed “influence
networks” [287,300].

3.2.3 Time-window graphs

A simple way of reducing a temporal network to a static
network is to include all the links present in a time win-
dow. (The very simplest way would be to take this time
window as the entire sampling time.) Several papers ad-
dress the question of choosing the time window so that
the resulting graph is as useful and informative as possi-
ble. Krings et al. [151] make a comprehensive study of this
question with respect to mobile call networks. Psorakis et
al. [233] discuss this question applied to animal proximity
networks. They show the static networks are dominated
by clusters at short time scales and are more like mod-
els of heterogeneous graphs (cf. Ref. [14]) for longer time
scales. For short time scales they find the starting time
also can make a big difference because of periodic pat-
terns. In a study of proximity data, Sekara, Stopczynski
and Lehmann [263] takes this idea a step further and uses
the clusters that fall out from shortening the time win-
dows to define a “gathering”. They argue that gatherings
are natural building block to characterize this type of data
and the face-to-face interactions they measure. Walker et
al. [306] discuss a similar characterization to understand
disease spreading in hospitals. The time window size also
affects modeling of dynamical systems on the network, Lil-
jeros, Giesecke and Holme [168] discuss how to chose the
parameter values to simulate disease spreading on a time-
windowed proximity data, in particular how the parameter

values of the disease spreading model are related to the
time window size. Ref. [103] shows that the beginning of
the time window should be as close as possible to the be-
ginning of the outbreak for the reduced, static network to
be as useful as possible for epidemic modelling. Génois et
al. [76] investigate the optimal time window of proximity
data ahead of targeted disease-intervention effort.

3.2.4 Concurrency graphs

A classic theory from the network epidemiological litera-
ture [309] explains that sexually transmitted diseases spread
much faster and further if there are many concurrent part-
nerships in the population. Usually, “concurrency”—as a
network property—is thought to be a property of an entire
graph [150]. It is, however, implicitly clear from Refs. [150,
201], that one can define the concurrency of a person as
the number of ongoing partnerships at some specific time
t, i.e. the degree in a graph where an link means that a
contact has happened before t, and will happen again. A
bit more generally, Ref. [103] defines links in concurrency
graphs as pairs of nodes having contacts both before tstart
and after tstop.

3.2.5 Difference graphs

Neiger et al. [205] use a static graph highlighting change
(rather than persistent patterns, like the above concur-
rency graphs). They define a difference graph between two
consecutive time steps by the links that changed between
the time steps.

3.2.6 Memory networks

Memory networks is a representation of a slightly more
informative data sets than contact sequences. It assumes
there is a recorded walk process on a set of nodes, like
flight passengers on multi-hop itineraries. This could nat-
urally be simplified to a temporal network of moves where
one move is independent of the others, which could be fur-
ther simplified to a weighted network (effectively a Markov
process transition matrix). Rosvall et al. [254,158] argue
that one can encode much information without much more
complexity by representing this data as a second order
Markov process, i.e. one records the frequency of walkers
arriving to node i from h that continues to j.

3.2.7 Static graph with a model for the contact dynamics

Above, we have considered simplified representations of
temporal networks that project out the temporal dimen-
sion (or change the meaning of the time dependence, so
that paths of links could represent nodes being indirectly
connected). One can also simplify a temporal network in
ways that retain some of the temporal structures. One
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such way is to separate the topology and the contact dy-
namics (sometimes [267] called link activation) over links.
The general idea of thinking of a temporal network as a
static network with some process generating contacts over
the links is called the ongoing link picture in Ref. [108].
The very simplest way would be to assume an underly-
ing static network where the contacts between the links
are modeled by the same interevent time distribution for
all the links. Goh, Vazquez, et al. [193,299] use such a
set-up to argue that fat-tailed interevent times slow down
spreading phenomena.

Inferring this type of picture from data is problematic,
even when it correctly describes the data. One thing miss-
ing is the beginning and end of links. For a short sampling
time window, this will, in principle, be a smaller prob-
lem (since the turnover of relationships is a slower pro-
cess than the contact, or link-activation, dynamics). So
in that sense, smaller sampling times are better for this
picture. However, for a short sampling time, the chance a
link will not have a single contact, and thus being unob-
served, is larger. There are ways to infer the beginning and
end times, and how good the assumption that there is no
turnover of links is [144,101,103]. One could also use link
prediction [173] to infer missing links, such methods are
(to our knowledge) not capable of estimating how many
missing links there are.

3.2.8 Birth and death (but not rebirth) of links

Another way of simplifying a temporal network, that keeps
both some topological and temporal information is to con-
sider a link continuously active between its first and last
contact. If the simplified picture of the previous section
is more accurate for short sampling interval, this picture
(called link-turnover picture in Ref. [108]) is better for
long sampling durations—after all, regardless the system
in question, all links needs to at least have a beginning.
This is similar to dynamic networks (Sec. Ref. 3.1.3), only
that it does not allow links to reappear. If the nodes, per-
haps by virtue of their links, also enter and leave the sys-
tem, then spreading processes have a predominant direc-
tion highlighted by this picture—from the older to the
newer nodes. Holme and Liljeros [108] argue that for dis-
ease spreading on many of the available data sets, the
link turnover picture is more accurate than the idea of a
static graph with an overlying contact dynamics. Note the
connection between the link-turnover picture and concur-
rency graphs discussed above—the active links at time t
in the link-turnover picture defines the concurrency graph
at t.

4 Temporal network structure

At the heart of network science lies the idea that there is
information in the structure of a network that can tell us
something about both the network evolution and systems
that operate on the network. Indeed, a definition of “struc-
ture” in this respect, could be “what carries information

in a temporal network”. In this section, we will discuss
how to measure the structure of temporal networks.

4.1 Network topology

This colloquium concerns temporal networks, and by “topol-
ogy” one usually refers to static structures. There are
plenty of literature about this (see e.g. Refs. [207,13] and
references therein). Here we will discuss the role of net-
work topology measures in temporal networks.

In the history of static network theory, measuring net-
work structure have been driving the field. For exam-
ple, after Barabási and coworkers discovered how com-
mon scale-free (i.e. power-law-like) degree distributions
are [14,13], there was a huge effort both to measure degree-
distribution and to model their emergence. For temporal
networks, similar ubiquitous structures are yet to be dis-
covered, perhaps they do not even exist. This has led the
research in temporal networks down a slightly different
path, where the focus is more on dynamic systems on the
network and how they are affected by structure, and less
on discovering common patterns or classifying networks.

Nevertheless, many temporal network studies are more
or less motivated by static network theory. Many authors
try to generalize a network-topology measure (we will see
plenty of examples of this in the sections on distance met-
rics, centrality measures and community structure meth-
ods below). Another way static network theory enters tem-
poral-network papers is through temporal mechanisms that
gives static network of accumulated contacts their struc-
ture. Mantzaris and Higham [179] investigate triadic closure—
a mechanism behind e.g. the high clustering coefficients
of social networks [207] (i.e. a high density of triangles).
Kunegis et al. [154] study aspects of the preferential at-
tachment mechanism that can give static networks an
emergent power-law degree distribution. Some studies also
try to separate topological and temporal effects on spread-
ing phenomena [109] or diffusion [54] (more about that
below).

4.2 Temporal structure

4.2.1 Burstiness and interevent time statistics

Now we turn to structures that only concerns temporal
aspects. Just like topological measures, these cover only
one aspect of temporal network structures. A very com-
mon temporal structure in the literature is the interevent
time distribution. In a time series of events this is the fre-
quency distribution of the time between the events. If the
events are independent and drawn from a uniform distri-
bution, then the interevent time distribution will be ex-
ponential. In empirical data sets, however, it is usually
fat-tailed, or even scale-free [101,124,12]. A difference to
scale-free degree distributions is that bursty time series
are usually characterized by their coefficient of variation
(called “burstiness” [80,192]) rather than their power-law
exponent.
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In a temporal network, one could think of a few differ-
ent types of interevent times, corresponding to a few differ-
ent types of time series. The most basic is the time series of
contacts between two nodes. The problem with burstiness
of individual links is that there are usually too few data
points to measure it accurately (or to measure it at all). In
many types of data sets, the number of contacts per links
also has a fat-tailed distribution [101]. This means that it
will be problematic to average the link burstiness, since
most links have only a few contacts and thus a poor es-
timate of burstiness. Some authors [128] concatenate the
interevent times and measure the burstiness of that time
series, but this does not get around the problem that in-
dividual nodes and links follow individual patterns.

Next, one can measure the burstiness of individual
nodes. This makes most sense when the temporal network
records a distinct sender and receiver of a contact. The
bursty structure of when people send e-mails [62] was an
important discovery for this line of research. The distribu-
tion of when people receive e-mails is perhaps less inter-
esting (and less bursty for that matter), but not without
structure (like daily patterns) [101,122,5,4]. The connec-
tion between the burstiness of links and nodes were inves-
tigated in Refs. [131,130].

4.2.2 Time aspects of network evolution

In addition to interevent times, there are many other purely
temporal structures. For example, the time between the
first and the last contact (between two persons or of one
person) in a data set [101,195,194]. This could be taken
as the life time of a link or node in the data (how to com-
pensate for the sampling bias from a finite sampling time
was discussed in Refs. [101,144]).

Finally, at the largest scale, one can measure the growth
or decay of a temporal network. In some data sets, all
the nodes and links are basically present at the begin-
ning of the sampling, and stay to the end (this is the case
for several cell-phone data sets [258], e-mail data [62] and
proximity data [225,117]). In other data sets, the overall
activity, including the number of nodes and links, grows
(this is the case for the online prostitution data studied in
Ref. [246] and the online communities [107,128]). In yet
other data sets, there is a constant turnover of nodes [297].
One metrics capturing the presence of nodes and links
throughout the data is the fraction of them that are seen
both before time fT (from the start of the sampling)
and after (1 − f)T , where T is the sampling duration.
Holme and Masuda [109] use f = 0.05 and studies time
not only as the real time but also as the number of a con-
tact, counting from the start (cf. Refs. [1,2,257]). Another
measure for a similar purpose—to monitor the growth of
the network—is to measure the fraction of nodes or links
present at half of the sampling time, or half of the total
number of contacts [109].

4.3 Paths and generalized distances

The most basic quantity of static networks that explains
the relationship of two nodes is their distance, i.e. the
smallest number of links of a path connecting them. In
temporal networks there are many ways of generalizing
distance and which one to chose is not always obvious. A
classic idea is to consider nodes i and j at time t, then
the latency [160] is t minus the latest time when there is
a time-respecting path from i to j. One could also look
forward and define the temporal distance [213] τ(i, j, t) as
the earliest time to reach from i to j on a time-respecting
path starting at t. The term “distance” may, at first, feel
awkward as a quantity of the dimension time, but one way
of thinking of the temporal network is as an operator that
sets the speed of processes, i.e. converts space to time, and
vice versa.

Rather than latency and temporal distance, one would
many times want to have a time-independent generalized
distance. The problem is that for any empirical data set,
for late enough t, the temporal distances are infinity (or,
analogously, for early enough t, the latencies are infinity).
Pan and Saramäki [213] explore different options—either
to assume periodic boundary conditions or separate the
issues of whether a node can be reached and how long time
it takes to reach it given that it can be reached. The latter
approach was also proposed by Holme [102], who defines
reachability time as the average shortest time to go from
i to j over the times when there is a time-respecting path
between them.

Another generalization of distances to temporal net-
works is to consider the number of contacts in a tempo-
ral path. Refs. [24,23] use only this definition, while e.g.
Refs. [33,315,38,270] use both.

Computing, generalized distances in time from one node
to all others is rather straightforward—just simulate an SI
spreading with 100% transmission probability and keep
track of the time when a node gets infected, that will also
be the shortest value. For hop-counts, one could use a
Ford–Fulkerson type algorithm where one runs through
the contacts in time order and the currently shortest path
is updated for each node involved in a contact. Proofs
and technical details about such algorithms can be found
in Refs. [160,33,315]. See Ref. [118] for some advanced
algorithmic issues about estimating temporal-path based
metrics in streaming data. Finally, we note that the ter-
minology is exceptionally confusing regarding the topic of
this section—there are a handful of terms for all the men-
tioned concepts, and some terms are used differently by
different authors.

4.4 Centrality measures

Centrality measures are usually comparatively easy to adapt
from static networks. In traditional network theory [207,
13] they typically build either on some assumptions of a
(more or less abstract) dynamic system on the network, or
on graph distance. One can simply let the dynamic sys-
tem evolve following the contacts rather than the links
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or replace distance by latency or temporal distance. The
only major difference is that a centrality measures will
depend on time (just like distance metrics). Alternatively,
one could project out time either by taking an average
or the minimum. Closeness CC(i, t), for example, that for
static networks are defined as

CC(i) =

 1

N − 1

∑
j 6=i

d(i, j)

−1 (2)

where d(i, j) is the graph distance. This can straightfor-
wardly be extended to temporal networks as [315,208,23,
139]

CC(i, t) =

 1

N − 1

∑
j 6=i

τ(i, j, t)

−1 . (3)

A problem with closeness centrality in static networks
which becomes much aggravated for temporal networks
is that there might not be any path between i and some
of the other nodes. A workaround is to average the inverse
distance rather than inverting the average distance [213]

CC(i, t) =
1

N − 1

∑
j 6=i

1

τ(i, j, t)
. (4)

The problem with this approach is that this type of mean
is less intuitive as it is a somewhat arbitrary combina-
tion statistic of the size of the components [209] and the
(temporal) distance within them. One could actually also
ignore the distances—the up and downstream components
of a node are also a sort of centrality measures. Kim et
al. [140] discuss how to estimate static centrality met-
rics of a time-window aggregated network (cf. Sec. 3.2.3)
from a previous time window. Michalski et al. [190] dis-
cuss an interesting way of omitting the time dependence
by weighing older paths lighter. One can define tempo-
ral betweenness centrality [207] in a similar way [90,208,
190,139,289,264,6]. Takaguchi et al. [288] define “tempo-
ral coverage centrality” of i as the fraction of node pairs
(j, j′) such that passing i would not increase the time to
reach from j to j′. Williams and Musolesi [314] define
path-distance-based centrality measures for spatiotempo-
ral networks (where one also knows where the nodes are).
Takaguchi et al. [286] consider a different notion of path-
based centrality, or importance—not of nodes but of con-
tacts. Simply speaking, a contact is defined as important
if it speeds up many time-respecting paths.

Rocha et al. [248] use the occupation probability of
random walks on a temporal network as a centrality mea-
sure. The “communicability” metrics of Estrada et al. [84,
64,178] is also based on a random walk through a quan-
tum theory propagator. Some related measures were also
scrutinized by Rogers [249]. Random walks centralities
overlap with centrality measures defined through spec-
tral properties of the adjacency matrix (or related ma-
trices). Praprotnik and Batagelj [232] make extensions of
matrix-based centrality measures for static networks (like
eigenvector and Katz centralities) to temporal networks.

Taylor et al. [291] define such a method that overcomes
some obvious problems like how to project out the time in
a principled and meaningful way. A different approach to
centrality was taken by Pan and Li [214] who define “con-
trol centrality” roughly speaking a node’s ability to control
the network (in a control theory sense). Zhang and Li [323]
and Ghoshal and Holme [79] define centrality-like mea-
sures capturing how much an individual participates in the
activity of a temporal network. Grindrod and Higham [83]
develop a differential equation based centrality measure
which generalizes Katz centrality [207] of static networks.
In another paper [82], Grindrod and Higham propose a
path-based centrality measure that downweigthts long and
old paths. In yet another paper [155] these (and some
other) authors validate centrality measures for a tempo-
ral Twitter network by (among other ways) a panel of
experts.

A problem related to centrality is to rank players and
teams in competitive sports. Motegi and Masuda [202] ad-
dress this issue in a situation when one have an incomplete
time-annotated set of matches with a win-or-lose outcome.
More specifically, one would like to rank the teams or play-
ers so that there are as few upsets (lower ranked player
beats a higher ranked player) as possible. At the same
time, newer results should be more important than newer.

4.5 Controllability

Structural controllability is a concept that has been adapted
from static network theory [171] to temporal networks.
It assumes a system with in- and output terminals con-
nected into a network. The dynamics between the nodes
is assumed to be simple, so that the output from one node
is proportional to (or at least a monotonous function of)
the input. One assumes no time delays in the dynamics
and no more complex effects (like memory etc.). One can
show that, for static networks, there are very simple topo-
logical characterizations of what nodes that one needs to
control in order to control the entire network. Pósfai and
Hövel [230] and Cimatti et al. [47] present comprehensive
generalizations of this theory to temporal networks. Pósfai
and Hövel [229] also show that for some classes of tempo-
ral networks, there can be a phase transition in the time
scale of the dynamics between a state where the network
is controllable by a a vanishing faction of nodes, and a
state where a finite fraction needs to be controlled. Pan
and Li [214] make an equally ambitious study of, among
other things, limits of the number of nodes that need to
be controlled. In another paper, Pan and Li [215] discuss
a graphic characterization of the nodes controlling a tem-
poral network.

4.6 Other graph invariants

For static networks there were many early studies char-
acterizing properties of the network structure by a single
number. Functions that map a graph (regardless of the la-
beling of the nodes) to one number is called a graph invari-
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ant. The number of nodes or links, are two simple exam-
ples. In static network theory some other graph invariants
are the clustering coefficient (measuring the fraction of
triangles) and the assortativity (measuring the tendency
of nodes of similar degrees to attach to each other) [207].
For temporal networks, we already mentioned some trivial
graph invariants in Secs. 4.2.1 and 4.2.2. All in all, there
are not so many temporal network studies that proposes
new functions to characterize the joint structure of time
and topology. One example is the average number of nodes
reachable from a random node at a random time (within
the sampling time) called “reachability” in Ref. [102]. An-
other example is Pfitzner et al.’s “betweenness preference”
study [225]. They investigate the predictability of time-
respecting paths. First they define a matrix, for every node
i and time step t, saying for which pairs of nodes is i situ-
ated on a time-respecting path between them. Through a
series of manipulations, including some information the-
ory, the authors arrive at a measure capturing the ten-
dency for paths to be time-respecting. Next, we mention
Scellato et al. [260] who define a measure of a temporal
network’s robustness as the expected change in the aver-
age closeness centrality (Eq. 4) if a random node is deleted.
Finally, a way of summarizing the activity of a node in a
time window using “factorial moments” was proposed by
Chi and Yang [45]. By this method (adopted from high-
energy physics) one can obtain scaling exponents char-
acterizing the fluctuations of node or link activity as a
function of the duration of the window.

4.7 Entropy measures

Information theoretical measures have been increasingly
popular the last few years, not only in temporal network
theory. Entropy measures capture the randomness of e.g.
the contacts in a temporal network. If the entropy is low,
there is much regularity in a signal which also means that
it is easy to predict. For example, Takaguchi et al. [285]
use an entropy-based analysis to conclude that knowing
a current face-to-face conversation partner decreases the
uncertainty of who the next conversation partner will be
by about 30%. Kun et al. [329] use entropy to understand
how to estimate the probabilities of configurations of face-
to-face interaction. Perotti et al. [221] use a entropy based
metrics “sparsity” to characterize events in temporal net-
works. Their intention is to create a metrics orthogonal
to burstiness and other interevent time statistics by first
looking across nodes in a time window, then projecting
out the time dimension. Some studies use entropy rates of
random walks on temporal networks to characterize the
temporal network structure [257,262,254].

4.8 Persistent patterns

Obvious patterns to look for in temporal networks are
links and subgraphs that do not change as much as oth-
ers. Clauset and Eagle [48] measure the auto correlation
function of links in temporal networks. Valdano et al. [296]

introduce a similar metric but for nodes. They define “loy-
alty” as the Jaccard index between the neighborhoods of
a node at one time step and the previous time step, and
show that it is important to understand the role of nodes
in disease dynamics. Zhang et al. [321] also argue that loy-
alty in socio-economic systems leads to heavy tails of the
duration of business contacts. Neiger et al. [205] address
an inverse problem by measuring how connected changing
links are. Briefly, they construct a network of the links
that changed from one time step to another, and measure
the minimum node cover (set smallest set of nodes such
that each link of the graph is incident to at least one node
of the set) of this network.

4.9 Cyclic patterns

In empirical temporal networks, especially those related to
human activity, there will be cyclic patterns. Several au-
thors [122,5,4,101] discuss aspects of how to handle this
type of patterns. Both how to measure how strong such
tendencies are, and how one can get rid of them (for anal-
ysis of quantities where a changing background activity
level is undesirable). Lahiri and Berger-Wolf [157] pro-
pose an axiomatic formalism to handle such phenomena.
Their method is flexible enough to allow some nodes and
links missing from a period and still regard a subnetwork
cyclic. On the other hand, their method does not handle
small random shifts in the cycle length, so one would need
to first coarse grain the data to be able to observe almost
cyclic pattern.

4.10 Motifs

A motif in a static network is a small subgraph that is
overrepresented in a graph compared to in a null model
(typically random graphs constrained to have the same
number of nodes, links and degree sequences as the origi-
nal graph). One could imagine several ways to extend this
concept to temporal networks. Zhao et al. [330] and Ko-
vanen et al. [149] focus on contacts that connect a group
of individuals and all happen within a time window of
size ∆t. They also study different classes of such mo-
tifs. Using this idea both papers examine mobile phone
data sets. Kovanen et al. discover gender-specific patterns
and homophily (the tendency of similar individuals to be
connected). These ideas are explored in greater detail in
Ref. [148]). Zhao et al. argue that complex motifs, like
ping-pong patterns are very overrepresented. Just like tri-
angles are common in static social networks, temporal pat-
terns involving the links of a triangle within a short time
period are common and important for spreading phenom-
ena [179,53,257]. Rocha and Blondel [244] also use counts
of triangles to characterize networks. Hulovatyy et al. [116]
extend the frameworks of Refs.[149,330]. First, they de-
fine a more restricted class of temporal subnetworks—∆t-
causal subgraphs (those are such that you can reach be-
tween all pairs of participating nodes by time-respecting
paths. Second they define “temporal graphlets” as the
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equivalence classes, with respect to the order of events,
of ∆t-causal subgraphs, and argue it is useful to think
of them as building blocks of temporal networks. In Li et
al. [166] the authors consider the order in which static net-
work motifs are assembled—an extension of the network
motif concept that is a bit closer to its original. Zhang
et al. [321] define temporal motifs between to consecutive
time steps in a bipartite network. Lahiri and Berger-Wolf
discuss how to predict recurring static motifs in Ref. [156].
Redmond and Cunningham [237] investigate the related
algorithmic problem of counting and listing isomorphic
temporal subgraphs.

4.11 Mesoscale structures

Network motifs are a way to look at how groups build up
a temporal network from the small scale. It rests on the
assumption that not everything in the network is equally
interesting. Another, even more popular, approach does
not make this assumption, but rather asks how a network
can be divided into groups so that all nodes belongs to one
group (the relative shape of the groups do not matter).
This approach is to find so called mesoscale structures (a
phrase borrowed from the natural sciences, but not used
completely analogously). The most common mescoscale
structure is community structure [70] and that is what we
will focus on in this section. We note, however, that recent
years have seen an increasing interest in core-periphery
structure [320,250].

In a static network, a community is thought of as a co-
hesive subnetwork—more densely connected within than
to other subnetworks. To operationalize such a definition
is a very open task—it seems almost like for every con-
crete decision you have to make in creating a commu-
nity detection algorithm there is no obviously best choice.
Therefore there is a huge number of community detection
methods [70]. For temporal networks, the easiest approach
is of course to separate the time and network dimensions.
In other words, at time t one would first run the com-
munity detection algorithm on the static network to de-
compose the nodes V into communities c1,t, . . . , cn(t),t so
that

⋃
i ci,t = V . The next step is to merge communi-

ties at t with overlapping communities at t − 1. There
are many ideas in the literature how to do that. Ref. [85]
maps the indices of t to the indices of t − 1 so that the
sum of mismatching indices is minimized. This approach
is very simplistic and some pathologies—if the groups are
{1, . . . , 50}, {51, . . . , 100} at t−1 and {1, . . . , 99}, {100} at
t, then the algorithm would consider {51, . . . , 100} leaving
a group and joining another, while it would be more natu-
ral to think of the two groups as merging and a single-node
group forming. Sekara et al. [263] merge communities (or,
rather, “gatherings”, see Sec. 3.2.3) by hierarchical clus-
tering. In other words, they construct a hierarchical order
(dendrogram) of the communities by first assigning a pair-
wise coupling strength

1− |ct ∩ ct
′ |

|ct ∪ ct′ |
e−γ(|t−t

′|−1), (5)

where ct and ct′ are two communities at two different
times t and t′. The idea of the exponential factor is to de-
crease the weight between groups the further apart they
are in time. Sekara et al. [263] further discuss how to
break the dendrogram into temporal communities. Tan-
tipathananandh et al. [290] propose a much more elabo-
rate scheme which penalizes a node for being temporar-
ily outside of a group, or changing a group, or starting
a new group, with a cost. Then the temporal group dy-
namics is inferred from minimizing the total cost. Kauff-
mann et al. [134] also design a cost-based time-clustering
scheme. Folino and Pizzuti and the early paper by Mucha
et al. [203] use an approach common in static networks—
to maximize an objective function (a.k.a. modularity func-
tion). Pietilänen and Diot [226] use modularity maximiza-
tion and subsequent aggregation in the time dimension. He
and Chen [96] recalculate the partitioning from a previous
time step and thus saves time compared to calculating it
from scratch every time step.

Rosvall and Bergstrom [253], Bazzi et al. [25] and Chen
et al. [43] present other methods where the clustering in
clustering in time comes from the persistence of clusters
of time-sliced networks. Gauvin et al. [74] use a tensor
factorization approach to identify additive temporal sub-
networks. They validate the method by recreating the
class structure of a face-to-face interaction network of a
school [275]. Matias and Miele [185] use a dynamic stochas-
tic block model to find temporal communities. Cai et al. [36]
propose a measure to characterize the activity level of
communities. Peixoto [220] discusses a stochastic block-
model approach that puts boundaries to the groups in
time such that it is reasonable to ignore the precise tim-
ing of contacts within a time window (just like one can
ignore the wiring of a community in a static stochastic
block model). Peel and Clauset [219] take a similar ap-
proach in their identification of change points in temporal
networks. Speidel et al. [268] define a community detection
scheme on time-node graphs (cf. Sec. 3.1.4).

Given how different temporal networks are (when it
comes to path statistics and spreading phenomena), we
can envision mesoscale structures that are further from
static networks than the ones mentioned above. For a
start it would be interesting with a community detection
method that does not need aggregation over time windows
(for the sparsest temporal networks, say a email network
at a second resolution); that e.g. operates directly on the
flow of some dynamic system.

4.12 Time scales

Timescales is a concept that temporal-networks researchers
frequently use. The basic type of reasoning with time
scales are of course common knowledge. The dominant
contaminating isotope after the Chernobyl disaster was
Caesium-137. It decays into non-radioactive isotopes ex-
ponentially, with a time constant of 44 years. Thus (ig-
noring dispersion by wind and rain) radiation problems
should vanish in a time scale of centuries. With temporal
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networks, however, this type of reasoning becomes, as we
argue in this section, more complex.

A typical definition of temporal networks, opposed to
evolving static networks, is that the time scales of the
network evolution are of the same order, or shorter, than
dynamic processes (epidemic outbreaks, Internet traffic,
etc.) on the network. If the time scale of the evolution
is longer than the dynamic processes, then one can as-
sume the dynamic process is finished by the time there
is a change to the network. However, for many reasons,
it is rarely that simple. First, in empirical temporal net-
works, there are many types of processes that all can take
place at their own time scale. Take a proximity network of
a researcher and her colleagues as an example. Passing a
colleague in the corridor could take seconds, a chat could
take minutes; a meeting hours; a conference days; a re-
search project months; the entire acquaintanceship could
take years or decades. All of these processes could leave
an imprint on the temporal proximity network. These as-
pects (with application to mobile phone interaction) are
discussed further in Ref. [258]. Second, the nodes could
follow very different individual patterns, and that could
have a big effect on any kind of dynamics on the network.
This is known to be an important factor for the spreading
of sexually transmitted infections [167] and information
in social media [104]. Some papers [48] find time scales
for individual links. Third, it could be the case that some
types of interactions are described by a scale-free tem-
poral statistics. This means that there is no well-defined
time scale. The most well-studied case of this category is
power-law distributed interevent times [193,12]. If the ex-
ponent γ of the power-law is large enough, the distribution
would have a well-defined average, but if γ < 1, it does
not, meaning if we monitor the average of the distribu-
tion in an ongoing measurement, there would always be
an observation long enough to change the average. Even
if one can characterize narrower power-law distributions
(and other fat-tailed distributions) with mean, median,
variance, etc., they do not define a scale in the sense of the
time constant of an exponential decay. Four, the accuracy
of the time-scale measurements can vary much, and one
may be tempted to include the more accurate ones (e.g.
diurnal patterns) in the modeling even though the less ac-
curately measured ones are more important for dynamic
systems. Five, some relationships (e.g. interevent time or
link lifetime distributions) cannot be easily parametrized
by quantities of the dimension time, thus defining time
scales. This is akin to a model selection problem, where
the number of time scales one can identify comes from
a trade-off between the goodness of fit and the simplic-
ity of the model. The sixth reason that time scales are
troublesome in empirical data is that they can be hard to
separate from effects of the dynamic system itself. This is
a more elusive problem and perhaps rarely very severe. If
one studies e.g. rumor propagation in social media, and
imagine this spreading happens on a temporal network of
follower-type contacts, then it could be that who follows
whom depends on the information spreading, so that even-

tually time scales of the spreading dynamics could mingle
in with time scales of the activity of the social media.

Caveats aside, it is clear that time scales are so useful
that it makes no sense to simply ignore them. There are
also several attempts to define and analyze time scales.
One common approach comes from temporal community
detection. As discussed (Sec. 4.11), it is natural to think
of temporal network communities as subgraphs that are
densely connected within and sparsely connected to other
communities during a time window. The choice of the in-
terval should be such that the community is relatively sta-
ble throughout the interval. If the same process governs
the formation and dispersion of communities in the entire
system, one could find a common time scale for the pro-
cess by temporal community detection. Several authors
have implemented this idea [55,290].

Another approach to defining time scales is to look at
the behavior of a dynamic system on the network. Differ-
ent aspects of the temporal network structure could affect
different dynamic systems, so this method cannot map
out all kinds of time scales in a data set. For this pur-
pose, researchers have used both random walks [240] and
spreading processes [24].

Caceres and Berger-Wolf [35] define timescales from
the optimal time windows. “Optimal” here could be eval-
uated in several different ways. It could, for example refer
to how compressible (in an information theoretic sense)
the temporal network within the time window is (which
should reflect how regular, e.g. persistent, the activity is
within, cf. [253]). Within this framework, Fish and Cac-
eres [68] define time scales from the optimal time window
for link prediction.

Yet a different approach to time scales comes from
Ref. [165] who think of processes taking place on the nodes,
so that a “dilution of the temporal network occurs, when
the intrinsic node time scale (node waiting time) is much
larger, than the edge dynamic (temporal resolution).”

5 Manipulating, predicting and generating
temporal networks

In this section, we investigate a number of way to analyze
temporal networks, either by manipulating an empirical
data set or simulating a dynamic system on the temporal
network.

5.1 Randomization and similar reference models

The idea of randomization techniques is to understand the
effect of a structure by destroying it through randomiza-
tion. If one measures e.g. the speed of a spreading pro-
cess in an empirical temporal network and an ensemble of
temporal networks where this particular structure is ran-
domized, then one can see how much faster or slower the
spreading becomes because of this structure.

Randomization techniques are much more powerful for
temporal networks than for static networks. First, they are
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much more versatile. For static networks, they are basi-
cally restricted to shuffling links (keeping the degrees of
the nodes fixed), arriving to something similar to the con-
figuration model with the same degree sequence as the em-
pirical network [207]. For temporal networks, we will see
a multitude of randomization schemes (and still not men-
tion all conceivable—see Refs. [102,110,104] for more).
The main reason, however, that they are more powerful
for temporal networks is that one can study effects of cor-
relations in the real data set without having to make an
exhaustive list of the correlations. In static networks, it is
usually more fruitful to build in the correlations into the
model from scratch (in e.g. some extended configuration
model [207]). If one take that approach in temporal net-
works, there are simply so many types of structures that
it is hard to say if an observed result comes from the gen-
erated correlation, or from some other structure that was
not generated. Another advantage is that, with random-
ization analyses one can be arbitrarily close to the real
data, and investigate the structure small steps away.

5.1.1 Shuffled time stamps

To understand the effects of the order of events, one can
randomly permute the times of contacts while keeping the
network structure and the numbers of contacts between all
node-pairs fixed [102,132,247,213,37,143,196,9,238,270].
Algorithmically, this is very simple. Starting from a three-
column list of contacts, one only needs to

1. Iterate through the contacts. Let i be the current con-
tact.

2. Take a random row j.
3. Swap the time stamps of rows i and j.

If identical contacts are forbidden, one would need to check
that before swapping the time stamps (and iterate from
step 2 until one finds j to swap with without introduc-
ing such a consistence). Usually, such cases are so rare
that one could ignore them and run the dynamic simu-
lation one is interested in on a temporal network with
duplicated contacts. This randomization scheme retains
the overall number of contacts in the network during any
period of time (i.e. preserving the overall daily and weekly
cycles of activity in social data). It does destroy temporal
effects like burstiness (at least some of it) and causal, trig-
gering effects like person A calls person B because person
C called A.

5.1.2 Random times

If one wants to understand the effects of cyclic patterns
(daily patterns in human and biological data, weekly pat-
terns in human data, etc.) [122,157] one can compare the
results from the shuffled-time-stamps randomization with
a “random times” scheme. Here one replaces the time
stamps with a random time, typically from a uniform dis-
tribution of the same duration as the original data. The
additional effect from this randomization compared with
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Fig. 4. Illustrating the shuffled-time-stamps scheme to ran-
domize temporal networks. Panel (a) shows the original net-
work from Fig. 2. Panel (b) shows how the randomization
scheme operates on a contact-list representation of the data.
In panel (c) we see the result as a nodal time-line plot. In
panel (d), we see the effect of this type of randomization for
susceptible-infectious (SI) spreading with 100% infection rate.
The plot shows the average number of infectious nodes I as
a function of time since the beginning of the data set t. The
data comes from Ref. [247] and one can conclude that the or-
der of event (that is destroyed by the randomization) speeds
up the spreading. In panel (e), we see a corresponding plot
for mobile phone data from Ref. [132] where the conclusion is
the opposite—spreading is slowed down, in the data, by the
structure of the order of the contacts.

shuffled time stamps explains the contribution from peri-
odic patterns [102,132,213,9]. There is, however, a caveat
for data sets where the number of present nodes is chang-
ing. For example the prostitution data of Ref. [246], an-
alyzed in e.g. Refs. [247,296,108,106,7]. In this data, the
number of users active at a time t (in the sense that they
have been involved in a contact before t and will be again
after t) is growing until late in the sampling time. As-
sume that all agents have the same contact rates. Then,
if one straightforwardly applies the above-described ran-
domization, the contact rates of the nodes present only
a short time will much lower than those spread out over
most of the sampling time. If this effect is not desired, one
could perhaps assign random times only to intermediate
contacts over an link (contacts between the first and last).
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Since this would not remove the periodic patterns from the
first and last contacts, there could still be biases if there
are many links with just a few contacts (which is often the
case). One could perhaps remedy this by adding a random
number to the time of the first and last contact. However,
there is probably no obviously best (or most principled)
way to draw this random number. Which serves well to il-
lustrate the difficulties of randomization techniques—just
like centrality measures and community structure [207,
13] there are many good ways of doing it, but none that
is obviously, under all circumstances, the correct one.

5.1.3 Random link shuffling

The above two randomization schemes destroy tempo-
ral structures. One could of course neutralize topological
structures as well. To do this, one can use a link shuffling
method defined as follows

1. Pick an link (i, j) (sequentially) from the list of links.
2. Pick another link (i′, j′) randomly.
3. With equal probability replace (i, j) and (i′, j′) by (i, j′)

and (i′, j), or by (i, i′) and (j, j′).
4. If the move in the previous step created a self-link or

multiple link, then undo it and start over from step 2.
5. Go to step 1.

There is no statistical grounded criteria, known to the au-
thor, saying how many times to iterate the above rewiring
procedure. Milo et al. [191] recommend 100 rewirings per
link. Finally, one would randomly redistribute the con-
tact sequences of individual links in the original temporal
network, to the randomized one.

This randomization procedure destroys all network topo-
logical structures except the degree sequence of the origi-
nal graph (of accumulated contacts). It preserves the over-
all activity level (or rather, and stronger, the set of times of
contacts), and all statistics related to interevent times, like
burstiness. The correlations between the overall activity of
a node and the links it participates in are, on the other
hand destroyed. This list of quantities preserved or de-
stroyed could be made longer—triggered event sequences
of e.g. person A calling person B calling person C would
also be destroyed, unless they concern only two nodes (cf.
“ping-pong patterns” [330,62,258]). This highlights an-
other slight drawback of randomization schemes—it can
be hard to untangle all their effects. However, it becomes
less of a problem when one use increasingly wide random-
izations to remove structure step-by-step.

5.1.4 Time reversal

Mostly to show the versatility of null-models, we mention
Bajardi et al. [10] and Donker et al. [58] who investigate
spreading on a network where time runs backwards. The
idea is that it could estimate the number and importance
of “casual sequences” where one contact triggers another
that triggers another, and so on, into an outbreak cascade.
As common with inference of causality, this method would

rest on more assumptions than one would ideally want,
nevertheless it shows a qualitatively different null model
from the above.

5.1.5 Poor man’s reference models

A difference with the time reversal null model, compared
to the previously mentioned ones, is that it does not de-
fine an ensemble of temporal networks, but only one new
temporal network. Sometimes computational constraints
could make averaging over an ensemble impossible. Ref. [108]
seeks to neutralize the effects of the distribution of in-
terevent times over links (keeping the first and last con-
tact intact, as mentioned above), but cannot sample an
ensemble of randomized network. Instead they spread all
the contacts between the first and last equally in time.
This creates one network which arguable lacks the struc-
ture (broadly distributed interevent times), even though
it lacks the same methodological basis (as it violates the
maximum entropy principle) as a randomized network model.
Ref. [108], furthermore, explore the effects of the distribu-
tion of the time to the first contact, and from the last
contact to the end of the sampling, in a similar manner—
by moving all contacts to the beginning and end, respec-
tively. Similar to the interevent times, this transforms a
temporal network to another temporal network (not an
ensemble) that lacks a structure, but instead of being dis-
tributed maximally randomly, it is just fixed to zero. As a
stand-alone argument it would just be a stopgap measure,
but Ref. [108] combines it with other ways of testing the
effects of interevent times, times from the beginning to the
first contact, and from the last contact to the end.

5.1.6 Randomization—conclusions and practical advice

As mentioned, we think randomization techniques are pow-
erful in temporal network studies, primarily as a method
to analyze data sets (with the benefit over generative null
models that one starts the exploration at the data set it-
self). One could also use randomization for more abstract
questions. Indeed, mentioned references like Ref. [102,108,
10,132,9] all uses randomization as intermediate steps to-
wards a larger theory of how temporal network structure
affects dynamic systems on the network.

The best methodology for randomization is be to build
a sequence of gradually more random ensembles. This
could be done in several ways—see Refs. [102,132,9] for
three different examples. Which way to choose is both
question and system dependent, but it is important to
make the randomization easy to interpret in terms of the
structure it is supposed to destroy. This is, as mentioned,
hard, and reading the literature one cannot help but think-
ing it would be helpful if someone worked out a systematic,
principled way of doing this.

5.2 Boundary conditions and extrapolations

The range of possible structures and correlations in tem-
poral networks is much larger than in static networks.
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That is a good argument for taking an empirical data set
as your staring point and using randomization (Sec. 5.1)
techniques, rather than tuning the structure of a gener-
ative model. The challenge with this approach is how to
generalize the results to larger networks and longer times.
Of course any kind of answer to this question involves
some form of modeling of the data. One approach to com-
pensate for a short sampling time T is to use periodic
boundary conditions [213,248,9,295,211], i.e. by the time
you reach the end of the sampling time t = T , you just
start reading from the beginning t = 0 but add mT to the
time for sweep m of your temporal network. This method
assumes that the ongoing link picture holds for the data
(cf. Sec. 3.2.7). The obvious problem with periodic bound-
ary conditions is that they ignore temporal effects longer
than the sampling time window. Worse yet, they can intro-
duce new structures. If, for example, a node has a life time
in the data of duration ∆t � T , then periodic boundary
conditions would introduce spurious interevent times of
durations of about T . If the data, however, fits well to the
ongoing link picture, then periodic boundary conditions
are a good idea. There are periodic temporal networks
too, where periodic boundaries are exact [71,69]—public
transport systems, communication with satellites in low-
Earth orbit, and security guard tours are three examples
(from Ref. [69]).

How to extend results for empirical data to larger pop-
ulations is an interesting future challenge. Rocha et al. [247]
add their temporal network data of sexual contacts in
prostitution to a background, non-prostitution sexual net-
work estimated from surveys. This approach, however,
cannot be better than the coarsely modeled background
data. Another approach that we have not seen evaluated,
or used, yet is to sample random subsets of the nodes and
by tuning their sizes and run the dynamic system on these.
Then plot the quantities of interest as function of the size
of the subsampled data (so the largest data point would
be the entire data set itself). By this method, one could
extrapolate results to larger sizes than the original net-
work. However, this finite-size scaling method (straightfor-
wardly applied) would introduce increasingly large biases
the smaller the subnetwork is (simply because sampling
half as many people is not the same as having a half as
big population). Further research in this type of meth-
ods would be very interesting. Could one, for example,
use empirical data as building blocks for arbitrary large,
semi-empirical data sets without introducing fatal biases?

5.3 Temporal link prediction

Given a static network, assuming there are some missing
links in it, link prediction is the problem to rank pairs of
nodes [173] in order of their likelihood of being a miss-
ing links. In temporal networks, this is usually rephrased
as to predict all links in the next time step, or further
into the future. See Ref. [56] for a survey of this fairly
large theme of mostly computer science. As an example
of a method, Dunlavy et al. [59] (and several others) base

their prediction methods on tensor factorization of the ad-
jacency tensor. It would be interesting to predict missing
contacts in a contact sequence. Given that an adjacency
matrix does not have to represent an evolving network of
accumulated contacts, this is a more principled general-
ization of link prediction to temporal networks (although
it makes less sense for computer science applications).

The slightly different problem of Génois et al. [77]
make a nice segue from this section to the next. Génois
et al. study how to compensate for missing temporal links
in empirical data for studies of spreading processes. Their
method is based on constructing a weight matrix (where
weight represents the fraction of all contacts that hap-
pened between two nodes). This means that they assume
the ongoing link picture (cf. Sec. 3.2.7) which could be
a severe limitation [108,194]. From the weight matrix,
Génois et al. generate synthetic contacts that could be
added to the original data to densify it.

5.4 Generative models

Generative models of temporal networks have a slightly
different role than in static networks. For classic network
theory [13] an important goal, especially in the early aughts,
was to construct network models that generated some
emergent structure (most commonly power-law degree dis-
tributions [14], but also e.g. community structure [85]).
For temporal networks there is no known, ubiquitous (or
at least very common) structure that combines time and
topology in a non-trivial way. On the other hand, there
is a multitude of structures that can interact with, and
affect, dynamic systems. The function of the models in
temporal networks is thus more as tools to investigate the
relation between structure and dynamics than to discover
microscopic mechanisms. Although, as we will see, there
are models of the latter kind too.

5.4.1 Static networks with link dynamics

The most straightforward approach to generate a tem-
poral network is to generate a static network from some
model, and for each link generate a sequence of contacts.
In the simplest approach, one would not let the contact
generation be influenced by the network position of the
links. For example, Holme [103] uses the following proto-
col.

1. Construct a simple graph by first generating a multi-
graph by the configuration model [207], then removing
duplicated links and self-links.

2. For every link, generate an active interval (when con-
tacts can happen) from some distribution. Ref. [103]
uses a truncated power-law for the duration of the ac-
tive interval, and a uniformly random starting time
within a sampling time frame.

3. Generate a sequence of contact times following some
(bursty or not) interevent time distribution.
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Fig. 5. Illustrating a simple generative model for temporal net-
works, used in Ref. [103] and (almost) in Ref. [243]. First one
generates a static network (technically a multigraph) from the
configuration model by (a) drawing degrees from a probability
distribution and (b) matching them up in random pairs. Then
one generates active intervals for the links (also randomly, in
this case all links being active the same duration), (c). Finally
one generates a time series of interevent times from a probabil-
ity distribution (d) and rescales it and matches it to the active
intervals.

4. Wrap the contact time sequence onto the active in-
tervals of the links. In other words, first rescale the
sequence to the total time of the active intervals, then
cut it in the same durations as the active intervals, and
assign it to them.

Adding correlations between the time and topology to
this approach is fairly straightforward. This model is il-
lustrated in Fig. 5.

Rocha and Blondel [243] use a method that is very sim-
ilar to the above framework. The only difference is that the
active interval of a node starts when that of another node
ends. By this procedure, they generate networks where the
number of active nodes is constant.

5.4.2 Activity-driven networks

Perra et al. [223] propose a model of temporal networks
that is simpler than the above. They use a graph sequence
framework (Sec. 3.1.2), so Gt denotes a simple graph at
(the discrete) time t. The generation proceeds as follows:

1. Increase the time counter to t and let Gt be empty.
2. For every node i, make it active with a probability
ai∆t. Connect i to m other randomly chosen distinct
nodes (active or not). Ref. [223] uses a truncated power-
law distribution for ai.

This model has been the ground for most analytical stud-
ies of processes on temporal networks [222,133,170,169,
274,279,93] and emergent static network structures [273].
Jo et al. [123] study disease spreading on a similar (but not
identical) temporal network model. Laurent et al. [161] ex-
tend the original activity-driven model to include memory
effects and triadic closure [179,53]. Yet an extension of the
activity-driven model was proposed by Moinet et al. [197].
Their model seeks to include aging effects, in particular for
scientific collaboration networks (cf. the long-term struc-
tures discussed in Sec. 3.2.8). In a final extension Sunny
et al. [281] incorporate life times of links (including non-
Markovian models that need to be solved numerically).

5.4.3 Face-to-face interactions and communicators

Starnini et al. [271] developed a model of temporal face-to-
face networks. This is naturally a spatiotemporal network.
Technically, their model is a two-dimensional random walk
model where there the chance of walking closer to a node
i is proportional to an increasing attractiveness ai. The
more attracted a walker is to its neighbors, the slower its
walk becomes. Finally, they also model the agents as hav-
ing active and inactive periods that they transfer between
with the same probability every time step. The authors
motivate the last step by observations (that the people
observed in e.g. Ref. [305] do not always socialize, even
though they could). Zhang et al. [326] propose a slightly
more elaborate model, but with an abstract representation
of space, for the same problem.

Mantzaris and Higham [177] propose a model for com-
munication in an online setting motivated by the obser-
vation that some individuals are much more central in a
temporal sense than they are in an aggregated static net-
work. Their method is somewhat similar to the above in
that it assigns an intrinsic trait value to the nodes. Then
it proceeds by assigning random communication partners
to a node by a basal rate and a positive feedback mecha-
nism. A more statistics oriented model of communication
in social networks can be found in Raghavan et al. [234],
while Hsu et al. [114] take a more mechanistic approach
towards a similar goal.

5.4.4 Link-node memory models

Vestergaard et al. [303] propose a model where both nodes
and links are activated by temporal (non-Markovian) ef-
fects. In their model, links can be active or inactive (like
the above mentioned activity-driven model). Apart from
their state, a link is characterized by the time τ(i,j) since
the last time it changed state. Similarly, a node i is also
acts depending on the time τi since it last was involved
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in a contact. The network is initialized to N nodes and
all links inactive. An active link is inactivated with a rate
zflink(τ(i,j)) (z is a control parameter). A node can initi-
ate (activate) a link with probability bfnode(τi). This new
link is chosen from the nodes i is currently not in contact
with with a probability Πnode(τj)Πlink(τ(i,j)). Where the
memory effects enters the model through the “memory
kernels” f and Π. Vestergaard et al. give these a power-
law decay form and shows that the with a proper choice of
exponents, their model can recreate the statistics of many
empirical temporal networks.

5.4.5 Self-exciting point processes

Masuda et al. [183] and Cho et al. [46] use a Hawkes
process with the same objective as Starnini et al. [271]
above. Masuda et al. observe that there is a positive cor-
relation between consecutive interevent times in empirical
data that cannot be modeled by interevent times alone.
Their model works by defining an event rate at time t as

v +
∑
i:ti≤t

φ(t− ti) (6)

where φ is an exponentially decreasing memory kernel
(zero for negative arguments to respect causality) and v is
a basal event rate. Even with an exponentially decreasing
kernel, the interevent time distribution becomes heavy-
tailed. The model also creates positive interevent time
distributions, but not the gatherings that can appear in
real face-to-face networks (Sec. 2.1). Cho et al. extend this
framework by including spatial effects. Zipkin et al. [332]
make a comprehensive study of point-process models of
social-network interaction but without a coupling to the
topology.

Like the above, Colman and Vukadinović Greetham [50]
propose a model of temporal networks founded on the the-
ory of stochastic point processes. In their setup, a node
forms and break links based on a Bernoulli process with
memory. Similar to the Hawkes process mentioned above,
the probability of an event between i and j increases with
the number of recent events that happened between i and
j. More precisely, Colman and Vukadinović Greetham take
the probability of a link to activate or deactivate at time t
to be proportional to the number of such events in a time
window of a certain duration ahead of t. For the model we
just sketched, the authors derive an emergent power-law
interevent time distribution.

6 Dynamic systems on temporal networks

The study of any kind of network is usually done with
some dynamic system in mind. The network is just the
infrastructure for the dynamics. As already mentioned, a
central theme in temporal networks is to relate the struc-
tures in both time and topology, to dynamic systems. The
types of dynamic systems of interest can be different com-
pared to static networks [228]—those that are naturally
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Fig. 6. Illustration of three dynamical systems on temporal
networks. Panel (a) shows a susceptible-infectious-recovered
model with a disease duration of 2.5 time steps. The outbreak
starts at node 3 at time 2 and reaches one other node. There is
a potentially contagious event between nodes 3 and 4 at time
4, but in this example chance made it not contagious. Panel
(b) shows a greedy walk starting at node 2 at the beginning
of the sampling period. A greedy walk follows every contact
away from the node where the walker is. Panel (c) illustrates
one of the temporal threshold models studied in Ref. [127]. A
node becomes adopter if it is exposed to (i.e. in contact with
an adopter) more than twice within a backward time window
of 2.5 time units.

much faster than the underlying network, like traffic on a
road network, become less interesting; those that are de-
pendent on the timing of the contact could be meaningless
in static networks.

6.1 Walks

A walk is a process where one (or possibly more) units
(walkers) move with the contacts across a temporal net-
work. In other words, the walker is always located at one
and only one node. If it is at i at time t, and there is a
contact (i, j, t) then the walker can go to node j. If the
walker makes the move or not could be decided in many
different ways. Usually the decision process has a random
component, making it a random walk [159,267,240,55,54,
248,266]. The limit of certainty defines greedy walks [257].

Random walks are a very fundamental stochastic pro-
cess with applications in many areas, from physics to econ-
omy, biology and social science [28]. For temporal net-
works, it is the dynamic system that is easiest and most
straightforward to adapt from static networks. One do
not need to make any of the subtle technical decisions
mentioned for epidemic models below. On the other hand
there are perhaps not so many real phenomena modeled
by random walks on temporal networks. Our only mo-
tivating example is Ramiro et al. [235] who argue they
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could be a lightweight communication protocol, and per-
haps the paths of travelers in air-travel data [254]. The
reason walks do not model many real systems is that
things spreading on temporal networks are usually not
conserved, or it is (like for distributed computing) the
thing spreading that defines the temporal network. For
this reason, the classical quantities of random walk the-
ory (e.g. first passage time) are also not as central as for
random walks on lattices or static graphs—but they do
exist [270,222,87,267]. Instead people either use walks as
probes of the system’s burstiness [270,54], time scales [55,
240] or other temporal patterns [257]. Another use of ran-
dom walks (alluded to above) is to use them as a basis
for a generative model of temporal networks [18,267,99,
100,182]. Delvenne et al. [54] separate temporal and topo-
logical effects in random walks on networks. Where one
typically use a fully connected underlying topology (ex-
cept Barrat et al. [18] who start from a weighted static
network). Memory network [254,262] are also modeling
temporal networks as random walks (beyond a first order
Markov process).

6.2 Epidemic models

The spread of infectious disease is one the most natural
types of dynamic processes on temporal networks [181].
The framework for modeling epidemic outbreaks is well
established since decades. In compartmental models, one
divides the population into states (classes, or compart-
ments) with respect to the disease, and assign transition
rules between these classes. The four most common states
are susceptible (individuals that do not have the disease,
but can get it), infectious (who have the disease and can
spread it), recovered (who cannot get or spread the dis-
ease), and exposed (who are infected but cannot yet in-
fect others). The infection event is always (as far as we
know) between a susceptible and an infectious and is usu-
ally the only transition that involves a human-to-human
interaction. The second, equally important, ingredient in
epidemic modeling is a model of the contact patterns, i.e. a
model or data set describing who meets whom, when and
(sometimes) where. Temporal networks fit well for this
job, and no wonder much of the temporal-network theory
have been developed with infectious diseases in mind. Het-
hcote’s Ref. [97] is our favorite introduction to the clas-
sic theory of epidemiology; Keeling and Eames [135] is
an excellent introduction to static networks as models of
contact structure; and Ref. [181] gives a brief review of
temporal network epidemiology.

Simulating disease spreading on temporal networks is
easy. Or rather, the straightforward way of doing it is also
quite efficient. The reason is that we assume the entire
contact sequence is an input. There is thus no reason to
model the contacts, like disease simulation algorithms on
static graphs need to do [105]. Still, there are many techni-
cal issues to consider when modeling disease spreading on
temporal networks. First, how one should model the ex-
posed and infectious stages. In traditional mathematical
epidemiology, one assumes a finite chance of exiting these

states every unit of time. This means that the duration of
those states will be exponentially distributed, which is not
in agreement with data [172]. The advantage is that (since
one time step is independent from the next) the analytics
gets much simpler. The other option is to assume these
stages have constant durations, which is also a big simpli-
fication. The advantage with this approach, except that it
is more realistic, is that it the programs become a bit faster
and sometimes more compact. Next, practical considera-
tion is what to do if there are several contacts involving a
node during the same time step. The solution depends on
the data set and how much you would like to stick to the
assumption that the contagion is instantaneous. One prin-
cipled way is to sample the contacts during a time step in
a random order, another is to not allow a contact to spread
the disease the same time step they got it (effectively in-
serting an extra exposed state). The last, and perhaps
biggest, technical issue is the boundary condition. Basi-
cally, you would like to assume that spreading can only
happen within the data, while at the same time, scale up
the results to a much larger population than your data set.
Génois et al. [77] make a pioneering attempt in resolving
this issue by proposing a resampling method to extrapo-
late the results to large populations. There are many tech-
nical challenges left to solve, and many redundancies to ex-
ploit to tune the algorithms. Vestergaard and Génois [302]
proposes an extension of the Gillespie algorithm (that,
rather than simulating an infection event by random num-
bers, calculates the time to the next successful infection).
It is worth noting that, the most canonical compartmental
models—the susceptible-infectious-susceptible (SIS) and
susceptible-infectious-recovered models (SIR)—are two-pa-
rameter models in temporal networks, but for both static
networks and fully connected models, they are effectively
one-parameter models. This changes the analysis more
than one could first expect, and it is easy to miss some
effect by analyzing them as if they were one-parameter
models.

Many papers in temporal network epidemiology (espe-
cially in the early days) showed the big differences that
adding the time component to the contact structure can
make [242,198,65,32,170,247,106,331,113,175,239,245]. One
line of research in temporal network epidemiology con-
cerns how structural aspects affect disease spreading. The
progenitors of this theme was the early HIV researchers
who compared serial monogamy to concurrent partner-
ships [201]. In the recent wave of temporal network re-
search an early finding was that burstiness—a broad dis-
tribution of time between contacts—slows down disease
spreading [132,193,113]. Ref. [247], however, found that
time shuffling (destroying burstiness) is slows down SI
spreading. The reason for this observation, argues Ref [108],
is that the number of active nodes in the data set of
Ref. [247] keeps growing throughout the sampling time.
This is a condition for the ongoing-link picture to hold,
which is assumed by papers arguing that bursty link dy-
namics slows down spreading (see Sec. 3.2.7). Rocha and
Blondel [243] continue this analysis with different spread-
ing, scenarios and structures on model temporal-networks.
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Briefly speaking, they conclude that it is hard to gen-
eralize the relationship between structure and spreading
statistics over different compartmental models. A quite
similar result is presented by Sun et al. [279] who show
that memory effects in model temporal networks can in-
crease the epidemic threshold of the SIR model but lower
the threshold in the SIS model. Karsai et al. [133] show
that, quite counterintuitively, strong links (paris of nodes
with many contacts) can impede a SIR spreading process.
Sun et al. [279] make this result more nuanced by showing
that in SIS spreading the strong links can prolong the out-
break. Analytical studies are rarer than computational (no
wonder—adding a level of complexity to network mathe-
matics makes it really challenging), but Zhang and Li [325]
and Valdano et al. [295] derive the epidemic threshold for
a SIS model using a rate equation and spectral method
respectively. There are also a handful studies using Perra
et al.’s [223] activity-driven and similar models to study
epidemics [133,170,281,169,279,93,123].

There is a number of papers in temporal network epi-
demiology that tries to connect to the traditional the-
oretical epidemiology. One example is studies analyzing
the basic reproductive number R0 in temporal networks.
R0 is defined as the expected number of people a first
infectious person would infect in a population of only
susceptibles. This is an estimator of the spreading speed
of a specific disease in a specific population, that many
(both medical and theoretical) epidemiologists are so used
to that they want to see it estimated, even though di-
rect quantities—prevalence (number of infectious individ-
uals) and incidence (number of infection events)—are not
harder to estimate than R0. That much said, R0 is an
important bridge between temporal-network epidemiology
and classical theoretical epidemiology (such as discussed
in Ref. [97]). Rocha and Blondel [243] estimate R0 for
many spreading scenarios in model temporal networks.
Holme and Masuda [109] discuss how R0 can fail as an
estimator for the final outbreak size. Consider two dis-
eases with per-contact transmission probabilities λ1 and
λ2 and disease durations δ1 and δ2. In principle, the out-
break size grows with both λ and δ, so there are naturally
parameter values λ1 > λ2 and δ1 < δ2 that gives the same
R0, but these do not have to give the same outbreak size.
In general, there are parameter values where disease 1 has
a larger R0 but disease 2 has a larger estimated outbreak
size. Holme and Masuda [109] discuss the conditions for
this, somewhat paradoxical, situation to happen and find
that sometimes this can be explained by topological prop-
erties, sometimes because of temporal structures. Another
way to connect the bridge between temporal networks and
static networks is to ask how to best reduce a temporal
network to a static network (i.e. so that the static network
encodes as important epidemiological information as pos-
sible). The simplest way is to assume a time-windowing
procedure (see Sect. 3.2.3) and ask how to choose the op-
timal time-window [151,168,103]. The rough answer (as
far as epidemic spreading goes) is that one should set the
beginning of the time window as close as possible to the
beginning of the epidemics and the end of it to match the

time scale of the spreading [103]. Ref. [106] investigates
how the additional, information of temporal networks af-
fect the predictability of outbreak sizes as a function of
when the outbreak is observed.

Another line of research concerns the identification of
influential spreaders. One version of this is the vaccination
problem—imagine you can immunize (or in other ways
lower the impact with respect to spreading) a fraction f of
a population, then how would you chose them. One needs
to make further assumptions about what kind of informa-
tion that is accessible, and how reliable it is, which make
this a rich question. Lee at al. [163] assume individuals can
name who they have been in contact with (such that the
disease could spread) and when the contacts happened.
They suggest to sample people at random and then vac-
cinate their most recent contact, which both increases the
chance of vaccinating active people in general and those
in a current burst of activity. Starnini et al. [272] extend
this research, assuming global knowledge about the con-
tact could be obtained and try protocols like vaccinating
nodes with the highest degree, or betweenness, over a time
window before the vaccination. Génois et al. [76] also seek
vaccinees by a form of estimated betweenness. Specialized
to corporate employees, they propose to first vaccinate
people who share their time between different departments
of the company. Osawa and Murata [212] identify vacci-
nees by growing a cluster in a greedy algorithm. Habiba et
al. [91] assume full knowledge of the contacts and investi-
gates vaccination by various temporal-network centrality
measures. Salathé et al. [255] also assume global knowl-
edge and argue that temporal patterns are important for
preventing the spread of influenza (with proximity data
from an American high school). Toth et al. [293] present
a similar study of influenza spreading in a real network
of elementary and middle school children. Ultimately, the
vaccination problem is a prediction problem. One needs
to decide whom to vaccinate to prevent future disease
spreading based on the knowledge at the time of the vac-
cination (which can only be about the past). Valdano et
al. [296] discuss this issue in more general terms and con-
nects it to the presence of persistent structures (Sec. 4.8).
Mantzaris and Higham [178] argue that communicability
is a good predictor for how easily an outbreak can spread
on a temporal network. Gauvin et al. [73] use their ten-
sor factorization method from Ref. [74] to identify tempo-
ral subnetworks that could contain a disease within itself
longer than expected by chance (thus acting reservoir for
the disease).

Even though most applications of temporal networks
to epidemic models concerns human diseases, there is a
particularly active subfield interested in disease spreading
in livestock [301,72,261,296,147]. The reason is twofold.
First, there are good data sets on animal transportation.
Second, a contact is fairly well-defined for such temporal
networks. (Which is also a reason sexual networks [309,
201,243,150,247] and hospital-transmitted infections are
frequently studied in the temporal-networks literature [51,
168].)
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6.3 Opinion and information spreading

Except disease spreading, the other major class of one-to-
many spreading phenomena in temporal networks of hu-
man contacts is that of rumors, opinions, information, etc.
By now it is a quite a cliché that these spreading phenom-
ena work differently than infectious diseases (“viral videos
don’t spread like viruses”). We have learned from studies
of spreading on social networking services that individual
behavior is very diverse. Not only do people have differ-
ent levels of activity, they could also follow completely
different mechanisms [251,180]. The term “complex con-
tagion” refers to processes where a compartmental model
of disease spreading is not enough, which is often, but not
always, the case for information spreading. There is some
ambiguity here—Ref. [88] defines complex contagion as
when the content of what is spreading affects the spread-
ing (like that one would have to be exposed more to an
idea the more controversial or contentious it is to adopt
it).

Maybe the simplest type of complex contagion mod-
els are threshold models. These assume that an individual
adopts an idea when the exposure is over a threshold.
For temporal networks, this adds complexity compared to
disease spreading models because, clearly, older influence
matters less than newer, so one has to decide how to down-
weigh the older contacts. Refs. [127,126] adapts Watts’s
cascade model [310] to temporal networks by counting
only contacts within a moving window. If a large enough
fraction, or number, of the contacts within this window is
to adopters (i.e. individuals carrying whatever is spreading
on the network), then an agent would adopt it. Ref. [284]
uses a slightly different threshold model, where the impor-
tance of a contact with an adopter decays exponentially in
time. All these three studies [127,126,284] conclude that
there are situations where burstiness would have slowed
down spreading in epidemic-type models, when it would
be accelerated for threshold models. The intuition is that
the contagion might need a burst to overcome the thresh-
old. Ref. [9] also uses a moving time window (like Ref. [127]),
but calculates the ratio of adopters among the number of
neighbors in the network of aggregated contacts. Thereby
they weigh exposure coming from different neighbors heav-
ier than repeated information from one neighbor. De Mar-
tino and Spina [180] extend the SI model to include in-
dividual contact rates and can thereby match empirical
spreading data more accurately. Finally, we mention Ref. [190]
that investigates methods to seed a temporal network (with
applications to word-of-mouth marketing) for optimal spread-
ing by a threshold type dynamics.

An even simpler type of opinion spreading model than
threshold models is the voter model. In this model ran-
dom nodes copy the opinion of random neighbors. Al-
though very popular in static networks, we only know two
works [111,66] studying it on temporal networks. In this
study, the temporal network is a result from a mutual se-
lection process. Comparing the voter model to other dy-
namic models on empirical data sets would be interesting.
Nishi and Masuda [210] study another model of opinion
spreading based on social balance theory. This theory con-

cerns networks with both positive and negative links. A
positive link means that two actors like or benefit from
each other. The theory states that triangles with an odd
number of negative links are not stable. This principle
could straightforwardly be changed into a network evolu-
tion model. Nishi and Masuda take another approach and
assume the interaction to be given, but the link signs to
evolve toward a more socially balanced state. They argue
that temporal fluctuations slow down the time to global
social balance.

6.4 Percolation, error tolerance and attack
vulnerability

Compared to random walks, and spreading processes, there
has been relatively little studies of percolation theory on
temporal networks. Otherwise, percolation is well stud-
ied, especially on regular lattices [60] but also on static
networks. Simply speaking, percolation theory colors the
nodes of a network black and white by some random pro-
cess, then asks the probability that there is a connected
path of black nodes reaching from one side of the network
to the other. Originating in geophysics, percolation theory
has also been used in material physics, and many types of
interdisciplinary applications. Starnini and Pastor-Sator-
ras [274] is the only paper we are aware of that is fully
devoted to percolation on temporal networks. Their main
point is to map an SIS process to a percolation problem,
which they test on the generative temporal-network model
of Ref. [223]. Pósfai and Hövel [230] study percolation as
a step towards studying network controllability (see also
Ref. [214]). Miritello, Moro and Lara [196] map a spread-
ing problem to percolation. Indeed, the SI model [247,24,
243,75,1] is equivalent to invasion percolation.

One way of interpreting percolation theory in networks
is as a way to estimate the functionality of a networked
system in the presence of failed components. If there is
a connected cluster spanning the network despite a ran-
dom fraction of the nodes broken, then the network, as a
whole, is still considered working. Alternatively, one can
think of an adversary that deliberately wants to break the
networked system. In static networks, heterogeneities are
known to improve the error tolerance but worsen the at-
tack vulnerability [3]. Trajanovski et al. [294] and Sur et
al. [282] arrive at a similar conclusion for temporal net-
works. Trajanovski et al. test a variety of attack scenarios.
Sur et al. specialize in networks with a pronounced tempo-
ral community structure. Note that the attack vulnerabil-
ity problem is (if not equivalent, at least) very similar to
identifying influential spreaders in information spreading
(Sec. 6.3) or nodes to vaccinate to stop disease spreading
(Sec. 6.2).

6.5 Synchronization

There are conspicuously few papers that take a temporal
network as input and asks how fast, or well, a network of
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oscillators can synchronize. A paper about synchroniza-
tion like Ref. [222] is about random walks seems like a
low-hanging fruit. The closest ones we are aware of are
Buscarino et al. [34] who investigate synchronization on
a network that evolves in an uncorrelated random way;
Lee et al. [164] who study a periodically changing un-
derlying network; and Kohar et al. [145] who randomly
rewire the network during the time evolution of an oscil-
lator system. We briefly mention neuroscience where syn-
chronization is an important concept. For brain networks
(as mentioned in Sec. 2.7) synchronization itself defines
the contacts (Ref. [19] and other papers) and is thus not a
dynamic system on the network, but there could be more
practical motivations for synchronization studies in this
direction.

6.6 Evolutionary games

A very well studied type of dynamics on static networks
is game theoretical models [283]. These address the evolu-
tion of cooperation in a population of egoistic individuals,
the evolution of populations that compete for a common
resources, and many other scenarios where there is a con-
flict between short-term individual interests and longer-
term interests of the entire population. Game theory mod-
els typically assign strategies (usually just labels) to the
agents. Then, based on the interaction network and the
strategies, they calculate a payoff for all the agents (that
they seek to optimize).

To our knowledge, there is only one paper studying
game dynamics on temporal networks—Cardillo et al. [37].
They base the study on human proximity data that they
aggregate over time slices. They run the game dynam-
ics over a time window, calculate the payoff and update
the strategies (by copying strategies from random neigh-
bors, but with a higher chance of copying a strategy of
a successful neighbor). Cardillo et al. focus most of their
analysis on the effects of the time window size and the
temporal network structure (analyzed by randomization
null models).

7 Discussion and future outlook

We hope this exposé has given you an overview the state
of temporal networks as of summer 2015. The field has
evolved tremendously in the last five years. When we wrote
Ref. [110], our feeling about the field was quite different.
We thought the field was waiting for its scale-free de-
gree distribution—some very common structure, involv-
ing both time and topology, that called for a non-trivial
explanation. This, we thought, would lead to a flurry of ac-
tivity in generative models. There have indeed been many
generative models proposed, but not to explain a newly
discovered structure. The focus have been more on what
is spreading or diffusing on the networks, rather than the
temporal networks themselves. This does not necessar-
ily mean that there is no future for temporal-networks
metrics. We cannot help but thinking researchers have,

so far, been too locked into thinking like static network
theory. There could be other types of structures, very dif-
ferent from established ones in both static network theory
and the theory of time series. In particular at the meso-
scopic scale, we can imagine meaningful temporal network
structures that are neither cohesive subgraphs, nor core-
periphery structures, nor bursts, etc. There has also been
a rather large amount of analytical works (even though the
field is, on average, more computational than static net-
work theory). This is of course a good thing, but we wish
the analytical minded authors would stay data driven,
and model structures that: first, are observed in empirical
data; second, can affect the dynamic system of interest.

Assuming the current trends will continue, we will see
temporal network research diverging from static network
science and become even more temporal. There is plenty
of room for such developments. For static networks, it
was early established that degree distributions [13] were
the most fundamental statistics. Even for purely tempo-
ral quantities of a temporal network, there is no obvious
such structure. In the wake of Ref. [12], there has been
a lot of focus on interevent times. But quantities such as
the time nodes or links first enter the data, the time be-
tween the first and last contact, the average time between
their contacts, etc. are not more complicated and, at least
under some conditions, more important for spreading pro-
cesses [108,109].

We also anticipate new applied areas to discover tem-
poral networks as a modeling framework. The last five
years, neuroscience (more specifically, brain science) has
started to embrace temporal network methods (Sec. 2.7).
There have been some temporal network papers in ani-
mal behavioral science (Sec. 2.2) and ecology (Sec. 2.10),
but we anticipate more studies in these fields. Especially
since there are several long-term ecological studies that
presumably have good temporal network data (see e.g.
http://www.lternet.edu/).

A straightforward way of finding new research ques-
tions if of course to add yet a level of complexity (just
like temporal network studies once spawned from network
science). The most natural way would be to add either dif-
ferent types of links to get temporal multiplex, or multi-
layer, networks [30,142], or space to get spatiotemporal
networks. Williams and Musolesi [314] and Ref. [78] dis-
cuss how to generalize many concepts (centrality etc.) to
when space is added to temporal networks (or time to
spatial networks). Sarzynska et al. [259] present a model
to generate null models for spatio-temporal networks of
interacting agents.

An area where we already in Ref. [110] anticipated
more activity is visualization. As illustrated in Fig. 1 and
alluded to in Secs. 3.1.5, 3.1.6 and 3.1.8, temporal net-
works lack the intuitive visual component of static net-
works. Probably this is a fundamental property that can-
not be completely altered, but there should be better visu-
alization methods than we have now. Highest on our wish
list is a method that both simplifies some structures (cf.
Refs. [85,290,253]) and keeps (at least some) of the time-
respecting paths (maybe at the cost of not having time on

https://www.lternet.edu/
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the abscissa). We should mention Zaidi et al. [318] who
present some other ideas how to visualize temporal net-
works than we discussed here.

Finally, another direction, we would love to see more
research in (mentioned in Sec. 5.2) is how to extrapo-
late results from e.g. spreading studies on empirical net-
works to larger populations. We believe there must be
other methods (to be discovered) of resampling the origi-
nal data, or scale up the results of such studies.
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5. T. Aledavood, E. López, S. G. B. Roberts, F. Reed-
Tsochas, E. Moro, R. I. M. Dunbar, and J. Saramäki.
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9. V.-P. Backlund, J. Saramäki, and R. K. Pan. Effects of
temporal correlations on cascades: Threshold models on
temporal networks. Phys. Rev. E, 89:062815, Jun 2014.

10. P. Bajardi, A. Barrat, F. Natale, L. Savini, and V. Col-
izza. Dynamical patterns of cattle trade movements.
PLoS ONE, 6:e19869, 2011.

11. N. C. Banks, D. R. Paini, K. L. Bayliss, and M. Hodda.
The role of global trade and transport network topology
in the human-mediated dispersal of alien species. Ecol.
Lett., 18(2):188–199, 2015.

12. A.-L. Barabási. The origin of bursts and heavy tails in
humans dynamics. Nature, 435:207–212, 2005.

13. A.-L. Barabási. Network Science. Cambridge University
Press, Cambridge UK, 2015.

14. A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, October 1999.

15. A. Baronchelli, R. F. i Cancho, R. Pastor-Satorras,
N. Chater, and M. H. Christiansen. Networks in cognitive
science. Trends Cogn. Sci., 17(7):348–360, 2013.

16. A. Barrat and C. Cattuto. Temporal networks of face-to-
face human interactions. In P. Holme and J. Saramäki,
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J. Saramäki, editors, Temporal Networks, pages 295–313.
Springer, Berlin, 2013.

101. P. Holme. Network dynamics of ongoing social relation-
ships. EPL, 64(3):427, 2003.

102. P. Holme. Network reachability of real-world contact se-
quences. Phys. Rev. E, 71:046119, Apr 2005.

https://arxiv.org/abs/1504.06667
https://arxiv.org/abs/1501.02758
https://arxiv.org/abs/1409.7017
https://arxiv.org/abs/1503.04066
https://arxiv.org/abs/1508.04006
https://arxiv.org/abs/1505.03044


Petter Holme: Modern temporal network theory: A colloquium 27

103. P. Holme. Epidemiologically optimal static networks from
temporal network data. PLoS Comput. Biol., 9:e1003142,
2013.

104. P. Holme. Analyzing temporal networks in social media.
Proc. IEEE, 102(12):1922–1933, Dec 2014.

105. P. Holme. Model versions and fast algorithms for network
epidemiology. Journal of Logistical Engineering Univer-
sity, 30:1–7, 2014.

106. P. Holme. Information content of contact-pattern repre-
sentations and predictability of epidemic outbreaks. e-
print: arXiv:1503.06583, 2015.

107. P. Holme, C. R. Edling, and F. Liljeros. Structure and
time evolution of an Internet dating community. Soc.
Networks, 26(2):155–174, 2004.

108. P. Holme and F. Liljeros. Birth and death of links con-
trol disease spreading in empirical contact networks. Sci.
Rep., 4:4999, 2014.

109. P. Holme and N. Masuda. The basic reproduction num-
ber as a predictor for epidemic outbreaks in temporal
networks. PLoS ONE, 10:e0120567, 2015.
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113. D. X. Horváth and J. Kertész. Spreading dynamics
on networks: the role of burstiness, topology and non-
stationarity. New J. Phys., 16(7):073037, 2014.

114. T. Y. Hsu, A. D. Kshemkalyani, and M. Shen. Model-
ing user interactions in social communication networks
with variable social vector clocks. In Advanced Informa-
tion Networking and Applications Workshops (WAINA),
2014 28th International Conference on, pages 96–101,
May 2014.

115. S. Huang, A. W.-C. Fu, and R. Liu. Minimum spanning
trees in temporal graphs. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 419–430, New York, NY, USA,
2015. ACM.

116. Y. Hulovatyy, H. Chen, and T. Milenković. Exploring
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132. M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, A.-
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M. Grčar, I. Mozetič, M. Puliga, and V. Zlatić. Extraction
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J. Saramäki, editors, Temporal Networks, pages 135–159.
Springer, Berlin, 2013.

290. C. Tantipathananandh, T. Y. Berger-Wolf, and
D. Kempe. A framework for community identifica-
tion in dynamical social networks. In Proceedings of
the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 717–726,
2007.

291. D. Taylor, S. A. Myers, A. Clauset, M. A. Porter, and
P. J. Mucha. Eigenvector-based centrality measures for
temporal networks. e-print arXiv:1507.01266, 2015.

292. I. W. Taylor, R. Linding, D. Warde-Farley, Y. Liu,
C. Pesquita, D. Faria, S. Bull, T. Pawson, Q. Morris, and
J. L. Wrana. Dynamic modularity in protein interaction
networks predicts breast cancer outcome. Nat. Biotech.,
27:199 – 204, 2009.

293. D. J. A. Toth, M. Leecaster, W. B. P. Pettey, A. V. Gund-
lapalli, H. Gao, J. J. Rainey, A. Uzicanin, and M. H.
Samore. The role of heterogeneity in contact timing and
duration in network models of influenza spread in schools.
J. R. Soc. Interface, 12(108):20150279, 2015.

294. S. Trajanovski, S. Scellato, and I. Leontiadis. Error and
attack vulnerability of temporal networks. Phys. Rev. E,
85:066105, Jun 2012.

295. E. Valdano, L. Ferreri, C. Poletto, and V. Colizza. Ana-
lytical computation of the epidemic threshold on tempo-
ral networks. Phys. Rev. X, 5:021005, Apr 2015.

296. E. Valdano, C. Poletto, A. Giovannini, D. Palma,
L. Savini, and V. Colizza. Predicting epidemic risk
from past temporal contact data. PLoS Comput. Biol.,
11(3):e1004152, 03 2015.

297. W. van den Broeck, M. Quaggiotto, L. Isella, A. Barrat,
and C. Cattuto. The making of sixty-nine days of close
encounters at The Science Gallery. Leonardo, 45:201–202,
2012.

298. P. Vanhems, A. Barrat, C. Cattuto, J.-F. Pinton,
N. Khanafer, C. Régis, B.-a. Kim, B. Comte, and
N. Voirin. Estimating potential infection transmission
routes in hospital wards using wearable proximity sen-
sors. PLoS ONE, 8(9):e73970, 09 2013.

299. A. Vazquez. Spreading dynamics following bursty activity
patterns. In P. Holme and J. Saramäki, editors, Temporal
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