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Linear Programming in Approximation Algorithm Design

One of the running themes in this course is the notion of approximate
solutions. Of course, this notion is tossed around a lot in applied
work: whenever the exact solution seems hard to achieve, you do
your best and call the resulting solution an approximation. In the-
oretical work, approximation has a more precise meaning whereby
you prove that the computed solution is close to the exact or optimum
solution in some precise metric.

Quick Refresher on Linear Programming

A linear program has a set of variables (in the example below,
x1, . . . , xn), a linear objective (in the example below, c⃗ · x⃗), and a
system of linear constraints (in the example below, Aji · x⃗ ≤ bj, for all j,
and xi ≥ 0 for all i). A linear program in “standard form” therefore,
takes the following form:

max ∑
i

cixi

s.t. ∑
i

Ajixi ≤ bj, ∀j

xi ≥ 0, ∀i.

Recall that it is OK to have variables that aren’t constrained to be
non-negative, equalities instead of inequalities, min instead of max,
etc. (and all such linear programs are equivalent to one written in
standard form — if you’re unfamiliar with LPs, you may want to
prove this as a quick exercise). Linear programs can be solved in
weakly polynomial time via the Ellipsoid algorithm (which we’ll see
later in class). “Weakly polynomial-time” means the following:

• You are given as input an n-dimensional vector c⃗, and an m × n
matrix A. Each entry in c⃗ and A will be a rational number, which
can be written as the ratio of two b-bit integers.

• Therefore, the input is of size poly(n, m, b). A weakly polyno-
mial time algorithm is just an algorithm that terminates in time
poly(n, m, b) (and the Ellipsoid algorithm is one such algorithm).

• A stronger stance might be to say that the input is really of size
poly(n, m), but you acknowledge that doing numerical operations
on b-bit integers will take time poly(b). A strongly polynomial-
time algorithm would be one that performs poly(n, m) numerical
operations (and then the algorithm will also terminate in time
poly(n, m, b) because each operation terminates in time poly(b). A
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major (major, major) open problem is whether a strongly poly-
time algorithm exists for solving linear programs. Note that the
Ellipsoid algorithm does more numerical operations if the input
numbers have more bits; it’s not just that each operation takes
longer.

Integer Programs

In discrete optimization problems, we are usually interested in
finding 0/1 solutions. Using LP, one can find fractional solutions
where the relevant variables are constrained to take real values in
[0, 1]. Sometimes, we can get lucky: you write an LP relaxation for a
problem, and the LP happens to produce a 0/1 solution. Now, you
know that this 0/1 solution is clearly optimal: not only is it the best
0/1 solution, it’s even the best [0, 1] solution. We will see an example
of this phenomenon in PSet 1, where we use a linear program to
find the minimum s-t cut in a graph. An example is the max weight
bipartite matching (or the weighted assignment problem) we saw in
the previous lecture.

max ∑
(a,b)∈E

w((a, b)) · x(a,b)

0 ≤ x(a,b) ≤ 1 ∀(a, b) ∈ E

∑b:(a,b)∈E x(a,b) ≤ 1 ∀a ∈ A

∑a:(a,b)∈E x(a,b) ≤ 1 ∀b ∈ B.

We don’t expect this magic to repeat for NP-hard problems. So
the LP relaxation yields a fractional solution in general. Then we
give a way to round the fractional solutions to 0/1 solutions. This
is accompanied by a mathematical proof that the new solution is
provably approximate.

The rest of the lecture discusses different LP rounding schemes.

Deterministic Rounding (Weighted Vertex Cover)

First, we give an example of the most trivial rounding of fractional
solutions to 0/1 solutions: round variables < 1/2 to 0 and ≥ 1/2 to 1.
Surprisingly, this is good enough in some settings.

Definition 1. The Weighted Vertex Cover Problem is the following:

• Input: a graph, G = (V, E) and a weight wi for each node i ∈ V.

• Output: a vertex cover, which is a subset S ⊆ V such that every edge
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e ∈ E contains at least one vertex of S (that is, there does not exist an
e = (u, v) ∈ E such that u /∈ S and v /∈ S).

• Goal: Output a set S minimizing ∑i∈S wi.

We first observe that an Integer Program can solve Weighted
Vertex Cover.

Observation 1. The following Integer Program is equivalent to a Weighted
Vertex Cover.

min ∑i wixi

xi ∈ {0, 1} ∀i
xi + xj ≥ 1 ∀{i, j} ∈ E.

Proof. The first constraint guarantees that every i is either in S (xi =

1) or not in S (xi = 0). The second constraint guarantees that every
edge e is covered (because at least one of its endpoints is in S). The
objective computes the weight of nodes in S.

We now want to consider the following LP relaxation of this
Integer Program:

min ∑i wixi

0 ≤ xi ≤ 1 ∀i
xi + xj ≥ 1 ∀{i, j} ∈ E.

Let OPT f denote the optimum value of this linear program, and let
VCmin denote the weight of the optimum vertex cover.

Observation 2. OPT f ≤ VCmin.

Proof. This immediately follows as every feasible solution to the
integer program defining VCmin is also a feasible solution to the LP
relaxation. Therefore, the LP can only be better.

We now consider the following simple rounding algorithm:

Definition 2 (Deterministic VC Rounding). Solve the LP relaxation. For
each i such that xi ≥ 1/2, add i to S. For each i such that xi < 1/2, keep i
out of S.

Lemma 1. Deterministic VC Rounding outputs a vertex cover.

Proof. By definition of the LP relaxation, we know that xi + xj ≥ 1
for every edge {i, j}. Therefore, at least one of xi or xj is ≥ 1/2, and
therefore at least one of {i, j} must be in S. Therefore, every edge is
covered.

Lemma 2. The weight of the set output by Deterministic VC Rounding is at
most 2OPT f ≤ 2VCmin.

Proof. Every element i of S contributed at least wi/2 to OPT f , and
contributes wi to the weight of S. OPT f can only be larger than
∑i∈S wi/2 because maybe other i not in S have xi > 0.
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Thus we have constructed a vertex cover whose cost is within
a factor 2 of the optimum cost. In particular, observe that we can
guarantee that our vertex cover is a 2 approximation, even though we
don’t know the quality of the optimum.

Exercise: Show that for the complete graph, Deterministic VC
Rounding indeed computes a set of size no better than 2 · OPT f .

Remark: This 2-approximation was discovered a long time ago, and
despite myriad attempts we still don’t know if it can be improved.
Using the so-called PCP Theorems, Dinur and Safra showed (improv-
ing a long line of work) that 1.36-approximation is NP-hard. Khot
and Regev showed that computing a (2 − ϵ)-approximation NP-hard
assuming the Unique Games Conjecture – a conjecture that posits
that a certain problem is NP-hard (but we do not know how to prove
this yet). Very recently, thanks to a proof of the related 2-to-1 games
conjecture, we now know that 1.414-approximating vertex cover is
NP-hard.

Simple randomized rounding: MAX-2SAT

Simple randomized rounding is as follows: if a variable xi is a frac-
tion then toss a coin which comes up heads with probability xi. If the
coin comes up heads, make the variable 1 and otherwise let it be 0.
The expectation of this new variable is exactly xi. Furthermore, lin-
earity of expectations implies that if the fractional solution satisfied
some linear constraint cTx = d then the new variable vector satisfies
the same constraint in the expectation. But, we may need to do more
work to understand.

Definition 3. The MAX2SAT Problem is the following:

• Input: n boolean variables x1, . . . , xn, and m clauses. j clauses are in J1,
and contain a single literal of the form xi or x̄i. The remaining m − j
clauses are in J2 and are in the form y ∨ z, where both y and z are equal
to some literal or its negation (we are guaranteed that y and z are from
different variables).1 1 If not, then either both literals are the

same, in which case it is just in J1, or
the clause is always true.• Output: An assignment of each variable to either TRUE or FALSE.

• Goal: Maximize the number of satisfied clauses (i.e. the clauses that
evaluate to true).2 2 Random aside: if instead we wish to

ask whether it is possible to satisfy all
clauses, then there is a simple poly-time
algorithm. But satisfying the maximum
number of clauses is NP-hard.

Observation 3. The following Integer Program is equivalent to MAX2SAT.
We have a variable zj for each clause j ∈ J1 ∪ J2, where the intended meaning
is that it is 1 if the assignment decides to satisfy that clause and 0 otherwise.
Below, yj1 is shorthand for the literal in clause j (Similarly for yj2.)
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max ∑
j∈J

zj

ti, fi ∈ {0, 1} ∀i

ti = 1 − fi ∀i

zj ≤ 1 ∀j ∈ J1 ∪ J2

yj1 ≥ zj ∀j ∈ J1

yj1 + yj2 ≥ zj ∀j ∈ J2

Proof. The first constraint guarantees that each xi is either true (ti =

1) or false (ti = 0). The second guarantees that each clause can be
satisfied at most once. The third constraints guarantee that each
clause can only be satisfied if at least one of its literals is true.

Now, we again want to consider the LP relaxation:

max ∑
j∈J

zj

1 ≥ ti, fi ≥ 0 ∀i

ti = 1 − fi ∀i

zj ≤ 1 ∀j ∈ J1 ∪ J2

yj1 ≥ zj ∀j ∈ J1

yj1 + yj2 ≥ zj ∀j ∈ J2

Definition 4 (M2S Randomized Rounding). The M2S Randomized
Rounding algorithm first solves the LP relaxation. Then, independently for
each i, it sets variable xi to true with probability ti.

Again, let OPT f denote the optimal solution to the LP relaxation.
We claim that M2S guarantees a 3/4-approximation:

Theorem 1. The expected number of clauses satisfied by the output of M2S
is at least 3OPT f /4.

Proof. We will analyze each clause j separately, and show that clause
j is satisfied with probability at least 3zj/4. The theorem will then
follow by linearity of expecation. We handle the cases of clauses in J1

and J2 separately.

Lemma 3. Let j ∈ J1. Then the probability that clause j is satisfied in M2S
at least zj.

Proof. Because j ∈ J1, it contains only one literal. If that literal is
xi, then xi is set to true with probability ti ≥ zj. If that literal is x̄i,
then xi is set to false with probability fi ≥ zj. Therefore, the lemma
holds.
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Lemma 4. Let j ∈ J2. Then the probability that clause j is satisfied in M2S
is at least 3zj/4.

Proof. Wlog, say that clause j is xr ∨ xs (idential reasoning holds if
one/both of these variables is a negation, swapping t for f below as
necessary). Then the probability that clause j is satisfied is 1 − (1 −
xr)(1 − xs) = xr + xs − xrxs ≥ xr + xs − (xr + xs)2/4.3 3 To see this last inequality, observe that

(xr + xs)2 − (xr − xs)2 = 4xsxr , and
therefore xsxr ≤ (xr + xs)2/4.

Now, consider the case when xr + xs ≤ 1. Then we have:

• zj ≤ xr + xs (directly from the LP).

• xr + xs − (xr + xs)2/4 ≥ xr + xs − (xr + xs)/4 = 3(xr + xs)/4.

These two facts together imply that the clause is satisfied with proba-
bility at least 3zj/4.

Consider now the case when xr + xs ≥ 1. Then we have:

• zj ≤ 1 (directly from the LP).

• xr + xs − (xr + xs)2/4 ≥ 3/4, as xr + xs ≤ 2.4 4 To see this last claim, take the deriva-
tive with respect to (xr + xs). The
derivative is 1 − (xr + xs)/2, which is
0 at xr + xs = 2, and positive on [1, 2].
Therefore, the minimum on [1, 2] is
achieved at xr + xs = 1, which is 3/4.

These two facts together imply that the clause is satisfied with proba-
bility at least 3zj/4.

We’ve now shown that for all clauses, the probability it is satisfied
is at least 3zj/4.

This completes the proof, by linearity of expectation.

Remark: This algorithm is due to Goemans-Williamson, but the
original 3/4-approximation is due to Yannakakis. The 3/4 factor has
been improved by other methods to 0.94.

Integrality Gap

An important parameter in LP-relaxations is call the integrality gap.

Definition 5. Integrality gap is the maximum ratio between the optimum
of LP and the optimum of IP.

This is usually an upper bound on how good we can approximate
the solution using LP relaxation and rounding. This is because
the rounding algorithm takes a fractional solution, and outputs an
integral solution, and we argue that the integral solution is at most
c times worse than the fractional, for some parater c ≥ 1. If the LP
relaxation has a large integrality gap, meaning that we may reduce
the optimum by a large factor c in the relaxation, then it implies that
any rounding algorithm must also lose the same factor c in worst



7

case. In the other words, we cannot design a rounding algorithm that
outputs an integral solution that is < c times worst.

The other way to understand integrality gap is that it can be
viewed as how close the IP and LP are. The integer program is
exactly what we wanted to solve. We could not do it efficiently in
general, so we solve the LP relaxation instead. If there is a large
integrality gap, then this means that the two programs are not that
similar, hence, solving the LP is not super useful in giving a good
solution to IP.

More Clever Rounding: Job Scheduling

Here, we’ll consider a more clever rounding scheme that also starts
from an LP relaxation due to Shmoys and Tardos. Consider the
problem of scheduling jobs on machines. That is, there are n jobs
and m machines. Processing job i on machine j takes time pij. Your
goal is to finish all jobs as quickly as possible: that is, if xij = 1
whenever job i is assigned to machine j (and 0 otherwise), minimize
M(x⃗) = maxj{∑i xij pij}, M(x⃗) refers to the makespan of x⃗, and we will
keep this definition even when x⃗ ∈ [0, 1]nm (instead of {0, 1}nm). This
lends itself to a natural LP relaxation:

min T

xij ∈ [0, 1] ∀i, j

∑
j

xij ≥ 1 ∀i

T ≥ ∑
i

pijxij ∀j

That is, we want to minimize the maximum load on any machine,
subject to every job being assigned (at least) once. Unfortunately,
this LP has a huge integrality gap. That is, the best fractional solution
might be significantly better than the best integral solution. Why?
Maybe there’s only one job with p1j = 1 for all machines j. Then the
best fractional solution will set x1j = 1/m for all machines and get
T = 1/m. But clearly the best integral schedule takes time 1. The
problem is that we’re asking for too much: if there’s a single job that
itself takes time t ≫ T to process on every machine, we can’t possibly
hope to get a good approximation to T with an integral schedule.
Instead, we’ll consider the following modified relaxation, which is
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parameterized by t > 0, and we’ll refer to as LP(t).

min T

xij ∈ [0, 1] ∀i, j

∑
j

xij ≥ 1 ∀i

T ≥ ∑
i

pijxij ∀j

xij = 0 ∀i, j such that pij > t

The problem with the previous example was that a single job had
processing time 1, but T = 1/m and we asked for a new schedule
with processing time O(1/m). Instead, we’ll ask for one of time T + t.
Note that if the optimal schedule has total processing time P, then
the maximum time it takes to process any job is some t ≤ P. So if
we solve the above LP with this given t, the optimal schedule will be
considered, and we’ll have T ≤ P and t ≤ P for a 2-approximation.
This is the main idea for why this approach works, but we’ll specify
everything in more detail below.

Definition 6 (ST Rounding Algorithm). Given as input a fractional
solution x⃗ to LP(t): For each machine j, let wj = ⌈∑i xij⌉. Make a bipartite
graph with jobs on the left and machines on the right. Make ⌈wj⌉ copies of
the machine j node, call them j1, . . . , jwj . Make a single node on the right for
each job.

For each machine j, sort the jobs in decreasing order of pij, so that
p(1)j ≥ p(2)j . . . ≥ p(n)j. Place edges from jobs to machine j in the fol-
lowing manner:

1. Initialize current-node c := 1. Initialize current-job i := 1. Initialize
job-weight w := x(1)j. Initialize node-weight-remaining r := 1.

2. While (i ≤ n):

(a) If w ≤ r, add an edge from job (i) to jc of weight w. Update r :=
r − w, update i := i + 1, w := x(i)j (the newly updated i). Keep c := c.

(b) Else, add an edge from job (i) to c of weight r. Update w := w − r,
update r := 1, update c := c + 1. Keep i := i.

In other words, starting from the slowest jobs, we put edges to-
talling weight xij from job i to (possibly multiple) nodes for machine
j. We do so in a way such that the slowest jobs are on the earliest-
indexed copies, and that each copy has total incoming weight at most
1 (actually all but the last copy have incoming weight exactly one,
and the last copy has weight at most one). Now our rounding algo-
rithm simply takes any matching with n edges, ignoring the weights
(i.e. matches every job somewhere) in this graph. We first need to



9

claim that such a matching exists, then claim that the total processing
time is not too large.

Proposition 1. In the bipartite graph defined by ST Rounding Algorithm,
there exists a matching of size n.

Proof. Because the total edge weight coming out of job i into a copy
of machine j is xij for all i, j, the total edge weight coming out of job
i in total is 1. Moreover, the total edge weight coming into each copy
of machine j is at most 1. Therefore, we have constructed a fractional
matching of size n. Therefore, there is also an integral matching of
size n (this is the same fact discussed in Section , which we didn’t
prove).

The above argues that the algorithm is well-defined (note that
the proof is not “complete” in the sense that we didn’t prove that
fractional matchings imply integral matchings. But it’s “formal” in
the sense that the proof is complete with this outside theorem). Now
we need to argue that the total processing time is good.

Theorem 2. The integral solution output by ST Rounding Algorithm has
makespan at most M(x⃗) + t.

Proof. We’ll show that for all machines j, the total processing time
of jobs assigned to j is at most M(x⃗) + t (which is equivalent to the
proposition statement). Note first that every job with an edge to node
jc has a lower processing time than any job with an edge to node
jc−1. So let Tc denote the processing time of the slowest job with an
edge to jc. Then we have M(x⃗) ≥ ∑i xij pij ≥ ∑

wj
c=2 Tc. This is because

the jobs assigned to node jc account for ∑i xij = 1, and each have
pij ≥ Tc+1. Finally, observe that T1 ≤ t, as by definition we didn’t
allow any jobs to be placed on machines where their processing time
exceeded t. So M(x⃗) + t ≥ ∑c Tc. Finally, observe that the maximum
possible processing time of the unique job assigned to node jc is Tc,
so the total processing time of machine j is ∑c Tc ≤ M(x⃗) + t.

This is a really influential rounding scheme that accomplishes
much more than just what is proved here — see the original paper
and follow-ups for details. We conclude by using this rounding
scheme inside a full approximation algorithm.

Definition 7 (ST Approximation Algorithm). The ST Approximation
Algorithm does the following:

1. Initialize M := ∞.

2. Initalize y⃗ = 0⃗.

3. For i = 1 to n, and j = 1 to m:
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(a) Solve LP(pij), and let T be its optimal value, and x⃗ be its fractional
assignment.

(b) If T + pij ≤ M:

i. Update M := T + pij.

ii. Update y⃗ := x⃗.

4. Round y⃗ to an integral solution y⃗∗ using ST Rounding Algorithm and
output y⃗∗.

Theorem 3. ST Approximation Algorithm satisfies ∑i,j y∗ij pij ≤ 2Opt.

Proof. Let i′, j′ denote the maximum processing time that is used in
the optimal integral schedule, and let i∗, j∗ denote the round where
M is set in ST Approximation Algorithm. Then we have:

∑
i,j

y∗ij · pij ≤ M ≤ Opt + pi′ j′ ≤ 2Opt.

The first inequality follows from Theorem 2. The second follows by
definition of the for loop, and because the optimal integral schedule
is one feasible schedule for LP(pi′ j′). The final inequality follows as
Opt ≥ pi′ j′ , as machine i′ takes at least time pi′ j′ to process.
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