
P R I N C E T O N C O S 5 2 1 :
A DVA N C E D A L G O R I T H M
D E S I G N

1

Hashing: Preliminaries

Hashing can be thought of as a way to rename an address space.
For instance, a router at the internet backbone may wish to have a
searchable database of destination IP addresses of packets that are
whizing by. An IP address is 128 bits, so the number of possible IP
addresses is 2128, which is too large to let us have a table indexed
by IP addresses. Hashing allows us to rename each IP address by
fewer bits. Furthermore, this renaming is done probabilistically, and
the renaming scheme is decided in advance before we have seen the
actual addresses. In other words, the scheme is oblivious to the actual
addresses.

Formally, we want to store a subset S of a large universe U (where
|U| = 2128 in the above example). And |S| = m is a relatively small
subset. For each x ∈ U, we want to support 3 operations:

• insert(x). Insert x into S.

• delete(x). Delete x from S.

• query(x). Check whether x ∈ S.

U

h

n elements

Figure 1: Hash table. x is
placed in T[h(x)].

A hash table can support all these 3 operations. We design a hash
function

h : U −→ {0, 1, . . . , n− 1} (1)

such that x ∈ U is placed in T[h(x)], where T is a table of size n.
Typically, we can assume that m ≤ n ≪ |U|, although we will talk
about some applications where we hash to a set with size n < m.

Since |U| ≫ n, multiple elements can be mapped into the same
location in T, and we deal with these collisions by constructing a
linked list at each location in the table.

One natural question to ask is: how long is the linked list at each
location?

This can be analysed under two kinds of assumptions:

1. Assume the input is the random.

2

2. Assume the input is arbitrary, but the hash function is random.

Assumption 1 may not be valid for many applications.
Hashing is a concrete method towards Assumption 2. We des-

ignate a set of hash functions H, and when it is time to hash S, we
choose a random function h ∈ H and hope that on average we will
achieve good performance for S. This is a frequent benefit of a ran-
domized approach: no single hash function works well for every
input, but the average hash function may be good enough.

Hash Functions

What do we want out of a random hash function? Ideally, we would
hope that h “evenly” distributes the elements of S across the hash
table. One option would be to map every element in U to a random
value in [n]. However, constructing such a “fully random” hash
function is very expensive: we would need to build a lookup table
with |U| rows, each storing log2(n) bits to specify the value of h(x) ∈
[n] for one x ∈ U. At this cost, we might as well have just stored our
original data in a |U| length array – it’s often simply impossible.

The goal in hashing is to find a cheaper function (fast and space
efficient) that’s still random enough to evenly distribute elements of S
into our table. For a family of hash functions H, and for each h ∈ H,
h : U −→ [n]1, what we mean by “random enough”. 1 We use [n] to denote the set

{0, 1, . . . , n− 1}For any x1, x2, . . . , xm ∈ S (xi ̸= xj when i ̸= j), and any
a1, a2, . . . , am ∈ [n], ideally a random H should satisfy:

• Prh∈H[h(x1) = a1] =
1
n .

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2] =
1

n2 . Pairwise independence.

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xk) = ak] =
1
nk . k-wise

independence.

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xm) = am] =
1

nm . Full
independence (note that |U| = m).

Generally speaking, we encounter a tradeoff. The more random
H is, the greater the number of random bits needed to generate a
function h from this class, and the higher the cost of computing h.
The challenge is to prove that, even when we use few random bits,
the hash stable still performs well in terms of insert/delete/query
time.

Goal One: Bound expected number of collisions

As a first step, we want to understand the expected length of a single
linked list. Note that this is just the first step towards understanding

3

the runtime of our desired operations. Assume that H is a pairwise-
independent hash family.

Let Lx be the length of the linked list containing x; this is just
the number of elements with the same hash value as x. Let random
variable

Iy =

1 if h(y) = h(x),

0 otherwise.
(2)

So Lx = 1 + ∑y∈S;y ̸=x Iy, and

E[Lx] = 1 + ∑
y∈S;y ̸=x

E[Iy] = 1 +
m− 1

n
(3)

Usually we choose n > m, so this expected length is less than 2.
Later we will analyse this in more detail, asking how likely is Lx to
exceed say 100.

The expectation calculation above doesn’t need full independence;
pairwise independence would actually suffice. In fact, we don’t
even need pairwise independence, we just need the probability of a
collision to be small. This motivates the next idea.

2-Universal Hash Families

Definition 1 (Carter Wegman 1979). Family H of hash functions is
2-universal if for any x ̸= y ∈ U,

Pr
h∈H

[h(x) = h(y)] ≤ 1
n

(4)

Exercise: Convince yourself that this property is weaker than
pairwise independence – i.e. that every pairwise independent hash
function also satisfies (4).
We can design 2-universal hash families in the following way. Choose
a prime p ∈ {|U|, . . . , 2|U|},2 and let 2 How do we know that such a prime

exists? This is due to Bertrand’s Pos-
tulate, which exactly states that such a
prime exists. Second, how do we find
such a prime? One option is to guess
random numbers between |U| and 2|U|,
check if they’re prime, and continue
until we find one. The Prime Number
Theorem states that each guess is likely
to be prime with probability roughly
1/ log(|U|). Also, the AKS primality
test lets us test whether a number is in
fact prime in time poly(log(|U|)). Alter-
natively, one could imagine an online
pre-computed database of primes that
lie in the correct range.

fa,b(x) = ax + b mod p (a, b ∈ [p], a ̸= 0) (5)

Then let
ha,b(x) = fa,b(x) mod n (6)

One this to note about fa,b is that fa,b(x1) ̸= fa,b(x2) if x1 ̸= x2.
Why? If fa,b(x1) = fa,b(x2) = s, then

a(x1 − x2) = 0 mod p,

which can’t be the case if a ∈ 1, . . . p− 1 and (x1 − x2) ̸= 0. Can
someone tell me why?

This isn’t immediately useful, because we will still have a hash
collision when fa,b(x1) = fa,b(x2) mod n, but it’s helpful to note.

4

Lemma 1. For any x1 ̸= x2 and s ̸= t, the following system

ax1 + b = s mod p (7)

ax2 + b = t mod p (8)

has exactly one solution (i.e. one set of possible values for a, b). In that
solution, a ̸= 0.

Proof. If you’re familiar with modular arithmetic, this is clear. Since p
is a prime, the integers mod p constitute a finite field. This implies
that any element in [p] has a multiplicative inverse mod p, so we
know that a = (x1 − x2)

−1(s− t) and b = s− ax1.

Figure 2: Modular arithmetic
for prime p = 7.

It’s not to hard to see this directly with a little thought. We want to
claim that

a(x1 − x2) = (s− t) mod p

has a unqiue solution a. Without loss of generality, assume that
x1 > x2. When we multiply (x1 − x2) by an integer, we’re moving
around the circle pictured in Figure 2 in increments of (x1 − x2). Since
p is prime, at each step before the pth step, it better be that we hit a
new element of [p] on the circle. Otherwise, we would have found
that (x1 − x2) (which is < p) multiplies by some other number < p to
equal a multiple of p. This of course can’t be true when p is prime.

So, as we multiply (x1− x2) by integers in [p], we hit (s− t) mod p
exactly once.

By Lemma 1, since there are p(p− 1) different possible choices of
a, b:

Pr
a,b←U({1,...,p−1}×{0,...,p−1})

[fab(x1) = s ∧ fab(x2) = t] =
1

p(p− 1)
(9)

Claim H = {ha,b : a, b ∈ [p] ∧ a ̸= 0} is 2-universal.

5

Proof. For any x1 ̸= x2,

Pr[ha,b(x1) = ha,b(x2)] (10)

= ∑
s,t∈[p],s ̸=t

1[s = t mod n)] · Pr[fa,b(x1) = s ∧ fa,b(x2) = t] (11)

=
1

p(p− 1) ∑
s,t∈[p],s ̸=t

1[s = t mod n] (12)

≤ 1
p(p− 1)

p(p− 1)
n

(13)

=
1
n

(14)

where 1 is an indicator function (that is, 1[x] = 1 if statement x is
true, and 1[x] = 0 otherwise). Equation (13) follows because for each
s ∈ [p], we have at most (p− 1)/n different t such that s ̸= t and s = t
mod n.

Can we design a collision free hash table then?

Solution 1: Collision-free hash table in O(m2) space.

Say we have m elements, and the hash table is of size n. Since for
any x1 ̸= x2, Prh[h(x1) = h(x2)] ≤ 1

n , the expected number of total
collisions is just

E[∑
x1 ̸=x2

h(x1) = h(x2)] = ∑
x1 ̸=x2

E[h(x1) = h(x2)] ≤
(

m
2

)
1
n

(15)

Let’s pick n ≥ m2, then

E[number of collisions] ≤ 1
2

(16)

and so
Pr

h∈H
[∃ a collision] ≤ 1

2
(17)

So if the size the hash table is large enough, we can easily find a
collision free hash function. In particular, if we try a random hash
function it will succeed with probability 1/2. If we see a collision
when inserting elements of S into the table, we simply draw a new
random hash function and try again. The expected function of this
proceedure is:

E[time to insert m items] = m +
1
2

m +
1
4

m + . . . = 2m.

Solution 2: Collision-free hash table in O(m) space.

At this point, we have designed a hash table that has no collisions.
The drawback is that it is that our table must be large: m2 to store

6

only m elements. But in reality, such a large table is often unrealistic.
We may use a two-layer hash table to avoid this problem.

0

1

n− 1

i

si elements

s2i locations

Figure 3: Two layer hash tables.

Specifically, let si denote the number of collisions at location i. If
we can construct a second layer table of size s2

i , we can easily find
a collision-free hash table to store all the si elements. Thus the total
size of the second-layer hash tables is ∑m−1

i=0 s2
i .

To bound the expectation size of ∑m−1
i=0 s2

i , we note that this sum is
nearly equal to the total number of hash collisions, which we bound
in Equation (15)! Specifically,

E[∑
i

s2
i] = E[∑

i
si(si − 1)] + E[∑

i
si] =

m(m− 1)
n

+ m ≤ 2m (18)

Including the first layer, we have now designed a hash table of
expected size 3m to store m elements (so some overhead, but much
less than before).

Load Balancing

In our 2-level construction, we cared about limiting the total size
of the hash table, and we were able to do so by bounding ∑m

i=1 s2
i .

However, we did not bound each si individually – it could be that
some buckets of the first hash table are much larger than others. In
some applications of hashing, this is something you want to avoid.

A simple example is when your hash table is distributed and each
bucket (or a small set of buckets) is stored on a separate machine.
The is a common architecture in large “no-SQL” databases like
Amazon’s DynamoDB or Apache Cassandra. In the distributed case,
memory isn’t a shareable resource across machines, so we care about
showing that no si is too large (i.e no machine is overloaded).

Another example arises when hashing is used to distribute work-
load across multiple machines. As a toy example, suppose I look
up directions from Princeton, NJ to Boston, MA on Google maps.
Google has many different serves computing efficient driving routes

7

and one potential strategy is to use a hash function to choose what
server to send your request (i.e hash the start and end locations).

Question: Why is hashing a good strategy? Why not just send the
request to an arbitrary or even randomly chosen server?

Load Balancing for Fully Random Hash Functions

Suppose we have n values, a1, . . . , an, from some universe |U|, and
we want to hash these values to a table of size n. This is often called
the “balls-into-bins” problem because we can think about hashing as
randomly throwing balls into bins and seeing how many balls each
bin has. It’s convenient to analyze the case when the number of balls
equals the number of bins, although this isn’t always the setup.

In the first lecture, we weren’t able to obtain bounds on the maxi-
mum load of a particular bin – we just showed that, on average, the
bins weren’t too overloaded. This could be done using Markov’s
inequality.

It turns out that we can get a bound on the maximum load using
Chebyshev’s inequality. Let’s just consider the first bin and how
many balls fall into it. Let Xi = 1[ball i falls into bin 1]. Assume that
we are using a 2-independent hash function, so:

E[Xi] =
1
n

.

What’s the variance of Xi?

Var[Xi] = E[X2
i]−E[Xi]

2 =
1
n
− 1

n2 ≤
1
n

.

Now, let X = ∑n
i=1 Xi. X is the total number of calls that land in bin 1

and E[X] = 1.
What’s the variance of X? Since each Xi, Xj are pairwise indepen-

dent,

Var[X] =
n

∑
i=1

Var[Xi] ≤ 1.

From Chebyshev’s inequality, we therefore have that:

Pr[|X− 1| ≥
√

2n] ≤ 1
2n

.

So bin 1 has load ≤
√

2n + 1 with probability 1/2n, and this exact
same bound holds for all other bins. Thus, by a union bound, every
bin has load ≤

√
2n + 1 with probability 1/2. That’s not bad! For

n = 1, 000, 000, we can say that the maximally loaded bin has ≲ 1400
elements. Shortly, we will see how to get an even tighter bound than
O(
√

n).

8

With our Chernoff bound in place, let’s revisit our “balls-in-bins”
analysis. Using a Chebyshev bound, we bound the max load of n
bins after inserting n balls by O(

√
n). The Chernoff bound will do

exponentially better.
Again, we will analyze things one bin at a time. Let Xi = 1[ball i falls into bin 1]

and let X = ∑n
i=1 Xi. µ = EX = 1. To apply Chernoff we will assume

fully random hash functions3. Since µ = 1, from Theorem ??, we have 3 There was a question about this in
class. It’s actually possible to prove
Chernoff bounds using O(log n)-wise
independence, which is much better
than full independence, but not as
simple as the 2-wise independence
we assume for our Chebyshev bound.
See recent work on improving over
O(log n) independence in or even
more recent work considering “power
of two choices” like methods .

; and

that:

Pr[X ≥ 1 + 6 log n] ≤ e−6 log n/3 ≤ 1
n2 .

So bin 1 gets ≤ 1 + 6 log n balls with probability at least (1− 1/n2).
By a union bound, we conclude that all bins have ≤ 1 + 6 log n with
probability 1− 1/n.

This bound of O(log n) on the maximum load of any bin improves
exponentially on our bound of O(

√
n) from Chebyshev. Moreover, it

holds with much higher probability. We could have succeeded with
probability (1− 1/nc) for any constant c if we slightly increase the
constant factor on 6 log n.

Power of Two Choices

The above O(log n) bound is very good, but it turns out that a simple
alternative hashing scheme can do even better. Consider the method
you use at the supermarket checkout: instead of going to a random
checkout counter you try to go to the counter with the shortest
line. In the hashing setting this is computationally too expensive:
one has to check all n queues. A much simpler version is to pick 2
random bins and place the ball in the one with fewer balls when the
ball comes in. It turns out that this modified rule ensures that the
maximal load drops to O(log log n), which is a huge improvement.
The power of two choices was first proven in the conference version of
4. 4

How about three choices? 4? d? Surprisingly, there’s not much to
be gained after 2. The bound only improves to O(log log n/ log d) for
d choices.

Other Considerations: Dealing with Adversaries

Other issues arise when hashing is used in a distributed way instead
of to build data structures on a single machine. An interesting one
is the issue of resistance to adversarial attacks. In particular, a user
submitting requests to a centralized server may be able to learn the
server’s hash function, even if that function is chosen randomly.

9

Question: How easy is it to learn our 2-universal hash function
described in (6)?

This can open the door for denial-of-service (DoS) attacks that
intentionally issue "colliding" requests. Even if an adversary does not
have the resources to take down a large web service, they may have
enough to take down one or several servers underlying that service.

Graph Sparsification

This is not quite related to hashing but we will show another appli-
cation of Chernoff bounds. This will be our excuse to introduce two
new and important ideas: uniform sampling and stratified union
bound.

A sparsifier for a graph is another graph that is smaller in some
respect (number of edges/vertices usually) while preserving some
properties. The most well-studied notion of graph sparsifiers is a cut
sparsifier – informally speaking, such a sparsifier preserves the size
of all cuts up to an error of a multiplicative (1± ϵ) factor.

Definition 2. For 1 > ϵ > 0, an ϵ-cut sparsifier for a graph a graph
G(V, E) is a (edge weighted) graph H(V, E′) on the same vertex set V such
that for every S ⊆ V, we have:

(1− ϵ)|EG(S, S)| ≤ |EH(S, S)| ≤ (1 + ϵ)|EG(S, S)|

Here, EG(S, S) is the set of all edges of G with exactly one end point in S.
And EH(S, S) is the sum of the weights of all edges with exactly one end
point in S.

What might we do with such a sparsifier? For one, even the exis-
tence of such a sparsifier is somewhat surprising as a combinatorial
statement regardless of the algorithmic applications. And naturally, if
we are interested in computing various notions of optimal cuts (e.g.,
min cuts, max cuts, sparsest cuts, min/max bisections, among several
others – if you are curious, google search these terms), we can simply
work with the sparsifier thereby reducing the runtime and still get an
almost optimal guarantee.

A consequence of a powerful line of work begun by Karger and
then later by Benczur Karger has led to a remarkable theorem that we
will see more details on in a later class: every graph admits a spectral
sparsifier – a strengthening of cut sparsifiers – with O(n) edges!. In a
later class, we will prove using the power matrix Chernoff bound,
this theorem with O(n log n) edges. Right now, we will settle for
something weaker but still quite powerful:

For every graph G with min cut of size k, there is an ϵ-sparsifier with
O(m

kϵ2 log n) edges.

10

We will prove this result by a very simple sampling scheme as
summarized in the next theorem.

Theorem 1. For any graph G(V, E), let H(V, E′) be a weighted graph
constructed as follows: 1) Choose a parameter 0 ≤ p = c log n

kϵ2 where k is
the size of a minimum cut in G, 2) for each edge e ∈ E, include it in H
independently with probability p with weight 1/p. Then, with probability at
least 1− 1/n, H is an ϵ-sparsifier of G wth O(|E|kϵ2 log n) edges.

We will use the following consequence of analyzing Karger’s
contraction algorithm for min-cut (also a HW problem).

Fact 1. In any graph G with min cut of size k and any α ≥ 1, the number of
cuts of size at most αk is at most n2α.

Proof. First, let’s understand what happens in H to the size of a
fixed cut, say S ⊆ V. The number of edges in H that fall into the cut
(S, S) is a random variable and equals ∑e∈cut(S) 1(e ∈ H). Because
we sampled the edges independently, 1(e ∈ H) are independent
0-1-valued random variables with mean p. By linearity of expectation,
the expected number of edges sampled from cut(S) in H is exactly
p|EG(S, S)| and thus their weight in expectation is exactly |EG(S, S)|.
Next, by Chernoff bounds, the chance that the fraction of edges from
cut(S) in H deviates more than a multiplicative (1± ϵ) factor is at
most O(e−O(p|EG(S,S)|ϵ2)).

How large can this probability be? If we were to calculate it for S
being a minimum cut (in which case, this probability is the largest
possible over all cuts), then the expression evaluates to e−O(clogn) ≤
1/nO(c). This is an inverse polynomial bound.

If we wanted to use union bound to argue that we all the cuts are
simultaneously well approximated in H, then, we are in tough luck
since the tail probability above is only inverse exponential but there
are 2n−1 many cuts! Thus, a naive union bound fails!

This brings us to the key idea: stratified union bound. We will
bucket the cuts in G into B1, B2, . . . , such that Bi contains all cuts
of size in [2i−1k, 2ik). Then, by Fact 1, the number of cuts in Bi is at
most n2i+1

. On the other hand, for every cut in Bi, |EG(S, S)| ≥ 2i−1k
and thus, by the same argument as above, the probability that the
number of edges from cut(S) sampled in H is ∈ (1± ϵ)|EG(S, S)| is
1−O(e−c2i−1logn). By union bound, the same holds simultaneously
for every cut in Bi with probability at least 1−O(n2i+1

e−c2i−1logn) =

1−O(e−(c−4)2i−1logn).
By a union bound over all the buckets, we now obtain that the

event above happens simultaneously for all the buckets with probabil-
ity at least 1−∑∞

i=1 O(e−(c−4)2i−1logn) = 1−O(e− log n) = 1− 1/nO(1)

if c ≥ 5, say.

11

Next, the expected number of edges sampled in H is exactly pm
where m is the number of edges in G. By applying the Chernoff
bound again, we conclude that with probability at least 1− 1/nO(1),
the number of edges sampled in H is at most O(pm). By a union
bound, all the cuts are 1± ϵ approximated and the number of edges
sampled is O(pm) with probability at least 1− 1/nO(1).

Bibliography

	Hashing: Preliminaries
	Hash Functions
	2-Universal Hash Families
	Load Balancing
	Other Considerations: Dealing with Adversaries
	Graph Sparsification
	Bibliography

