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Basic Large Deviation Bounds

Today we recall elementary probability and some useful large
deviation bounds with some applications. We will use this frequently
in this course.

Recall that a (real-valued) random variable X : S → R is function
that maps a sample space S (i.e., outcomes of a random “experi-
ment") into real numbers R. The expectation or mean (think average) is
denoted E[X] or sometimes as µ:

E[X] def= ∑
s∈S

Pr[s] · X(s)

For example, when you toss a fair coin, the sample space has
two outcomes: "heads" or "tails." A natural random variable in this
context is the “indicator" of “heads". This random variable maps
“heads" into 1 and “tails" into 0. In this case, note that E[X] = 1/2.

As another example, consider the random “experiment" where
you toss n fair coins. There is a natural set of n random variables
X1, X2, X3, . . . , Xn one for each indicator of a given coin landing on
heads.

We are often interested in understanding how a random variable
deviates from its mean. There are various quantitative measures that
we will use to assess this deviation. Perhaps the most basic one is
variance defined by:

Var[X] def= E
[
(X − E[X])2

]
.

We will often use µ to denote E[X] and σ2 to denote Var[X].
Here are examples of facts that you might remember from discrete

math or other undergrad classes. We won’t prove them all in class,
but it might be a good refresher to re-derive them yourself or in office
hours.

• For any random variables, independent or not, E[∑i Xi] = ∑i E[Xi].
This is call the Linearity of Expectation.
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• If X1, X2 are independent random variables (formally, this means
that for all a, b Pr[X1 = a, X2 = b] = Pr[X1 = a]Pr[X2 = b]), then
E[X1 · X2] = E[X1] · E[X2].

• When we say a set of random variables X1, . . . Xn are mutually
independent, we mean that for all a1, . . . , an, Pr[X1 = a1, X2 =

a2, . . . Xn = an] = ∏i Pr[Xi = ai].

• We say that X1, . . . , Xn are pairwise independent random variables if
for all Xi, Xj, Xi and Xj are independent, but the set of all variables
are not necessarily mutually independent.

• If X1, . . . , Xn are pairwise independent, then Var [∑i Xi] = ∑i Var[Xi].

Exercise: Give an example of three random variables that are not
mutually independent, but are pairwise independent.

Three progressively stronger tail bounds

As discussed above, we are often interested in understanding the
probability that a random variable deviates from its mean. A prac-
tical scale to measure such deviation is the number of standard
deviations (this, e.g., allows you to compare deviations of random
variables that may take values at different “scales"). We will typically
be interested in large deviations – the chance that a random variable
takes a value that is ≫ σ away from its mean.

Inequalities that bound such probabilities are often called tail
bounds or concentration inequalities.

Markov’s Inequality

The first of a number of inequalities presented today, Markov’s
inequality says that any non-negative random variable X satisfies

Pr (X ≥ kEX) ≤ 1
k

.

Note that this is just another way to write the trivial observation
that E[X] ≥ k · Pr[X ≥ k].

Equivalently,

Pr (X ≥ t) ≤ EX
k

.

Can we give any meaningful upper bound on Pr[X < c · E[X]]

where c < 1, in other words, the probability that X is a lot less than
its expectation? In general, we cannot.

Exercise: For any c < 1, δ < 1, find a distribution where Pr[X <

cE[X]] = 1 − δ). In other words, X is often far below its expectation.
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However, if we know an upper bound on X, then we can make
such a statement. If X ≤ z then for any c < 1 we have:

Pr(X ≤ cE[X]) ≤ z − E[x]
z − cE[x]

.

Sometimes, this is also called an “averaging" argument.

Exercise: Prove this by applying Markov’s inequality on a different
random variable.

Here’s an application:

Example 1. Suppose you took many exams, each scoring from 1 to 100. If
your average score was 90 then in at least half the exams you scored at least
80.

Markov’s inequality can sometimes be useful for making quick de-
ductions about random variables. It also applies to any non-negative
random variable. Because arbitrary non-negative random variables
can behave wildly, we shouldn’t hope for a stronger claim to hold
without making some reference to properties of the random variable.
We now move on to Chebyshev’s inequality, which makes use of the
variance.

Chebyshev’s Inequality

The variance of a random variable X is one measure (among many
others) of how “spread out” it is around its mean. The variance is
defined as Var[X] = E[(X − E[X])2] = E[X2] − E[X]2, and we
often denote it by σ2. The square root of the variance, σ, is called the
standard deviation.

Here’s Chebyshev’s inequality:

Pr[|X − E[X]| ≥ kσ] ≤ 1
k2 ,

Chebyshev’s inequality is obtained by simply applying Markov’s
inequality to the non-negative random variable (X − EX)2.

E
[
|X − EX|2

]
= σ2,

and so,

Pr
[
|X − EX|2 ≥ k2σ2

]
≤ 1

k2 .

We won’t give a specific example in class, but it is helpful to men-
tion that Chebyshev’s inequality can often be used to analyze how
well an average of many random variables concentrates around its
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expectation. In particular, suppose Y1, Y2, . . . , Yt are i.i.d. (indepen-
dent and identically distributed) random variables, meaning that they
have the same distribution. Suppose each has variance σ2. Then:

Var

(
1
t ∑

i
Yi

)
=

σ2

t
.

In other words, even if each Yi does not concentrate close to its mean,
taking an average quickly improves our variance and gives better
concentration via Chebyshev’s inequality.

Chernoff bounds

We will now see a helpful inequality with a much stronger bound on
the large deviation probability. In general, such inequalities follow
the following maxim:
Random variables that are simple functions of sufficiently independent
random variables must be tightly concentrated around the mean.

We will see a very special case of this principle in action. Our
simple function would simply be the sum (or average) of mutually
independent random variables. But the general principle (and in fact
even the proof techniques to an extent) apply to more complicated
scenarios where the constituent random variables are only k-wise
independent for some large k instead of mutually independent and
the “simple" function is a polynomial in the constituent random
variables instead of just being the sum. Later on in this class, we
will see a generalization of an inequality to matrix-valued random
variables that will also be extremely useful. But first, let’s discuss the
tail bounds in relation to Chebyshev’s inequality a bit further.

Discussion

How tight is Chebyshev’s inequality? I suspect many of you have
seen this picture before:

If X is distributed as a normal random variable, aka a Gaussian,
aka a Bell Curve, and it has standard deviation σ (i.e. variance σ2),
then it is well known that:

Pr (|X − E[X]| ≥ 1σ) ≈ 32%

Pr (|X − E[X]| ≥ 2σ) ≈ 5%

Pr (|X − E[X]| ≥ 3σ) ≈ 1%

Pr (|X − E[X]| ≥ 4σ) ≈ .01%

On the other hand, Chebyshev inequality would predict upper
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Figure 1: 68-95-99 rule for
Gaussian bell-curve.

bounds of:

Pr (|X − E[X]| ≥ 1σ) ≤ 100%

Pr (|X − E[X]| ≥ 2σ) ≤ 25%

Pr (|X − E[X]| ≥ 3σ) ≤ 11%

Pr (|X − E[X]| ≥ 4σ) ≤ 6%.

It appears that, at least for the common Gaussian distribution,
we can obtain much stronger concentration bounds: the chance off
landing outside a given number of standard deviations falls off very
fast. This makes sense if we look at the probability density function,
N , of the Gaussian distribution:

N (x) ∼ e−x2/2σ2
.

The distribution is falling off exponentially in x/σ.

Exercise: For Gaussian X with variance σ2, show that Pr (|X − Ex| ≥ cσ) ≤
O(e−c2/2).

Why are bounds for Gaussian random variables important in algorithm
design?

The Central Limit Theorem says that the sum of n independent ran-
dom variables (with bounded mean and variance) converges to the
Gaussian distribution, even if those random variables themselves
aren’t Gaussian. For many random variables that appear in random-
ized algorithms, this convergence happens very quickly, meaning that
we can analyze the sum by treating it as a Gaussian random variable.

A well known example is coin tossing. Let X = ∑n
i=1 Xi be a

random variable which is the sum of n random variables, X1, . . . , Xn,
each being 1 with probability 1/2 and 0 otherwise. X represents
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the number of heads that will appear when flipping n fair coins. It
is possible to explicitly compute the distribution of X. As we see
in Figure 2, this distribution quickly begins to look like a Gaussian
distribution as n increases.

(a) Distribution of # of heads
after 10 coin flips, compared to
a Gaussian.

(b) Distribution of # of heads
after 50 coin flips, compared to
a Gaussian.

Figure 2: The distribution of
the number of heads in a se-
quence of n coin tosses quickly
converges to a Gaussian dis-
tribution, as predicted by the
Central Limit Theorem.

This concentration to a Gaussian implies that we can get much
better bounds on, e.g. coin tossing processes, than we would via
Chebyshev’s inequality. To do a back of the envelope calculation, if
we flip n coins and all n coin tosses are fair (heads has probability
1/2) then the Gaussian approximation has mean n/2 and variance
n/4. Let X be the number of heads we see. We can bound Pr(|X −
n/2| ≥ kσ) ≤ e−k2/2. σ = O(

√
n), so if we want to be within ϵn of

n/2, we need to set k = ϵ
√

n.
How large do we need to set n to achieve this bound with proba-

bility 1/2? We need n = O(1/ϵ2). How about with probability 1/n10?
We need n = O(log(n)/ϵ2). In other words, we pay very little to
achieve much higher probability estimates. To give a real number
example, if we flip 1000 coins, the chance of seeing at least 625 heads
is less than 5.3 × 10−7. These are pretty strong bounds!

Main Theorem

Of course, for finite n, the sum of n random variables is not nec-
essarily exactly a Gaussian. That’s where Chernoff bounds come
in. They help us quantify this potentially very powerful Gaussian
approximation in the large deviation/tail setting.

There are many forms of such inequalities, often under various
other names (Chernoff bound, Bernstein inequality, Hoeffding in-
equality, etc.). One particularly useful one applies to random vari-
ables bounded between [−1, 1]. To apply it to more general bounded
variables, just scale them to [−1, 1] first.

Theorem 1 (Bernstein’s Inequality). Let X1, X2, . . . , Xn be independent
random variables and each Xi ∈ [−1, 1]. Let µi = E[Xi] and σ2

i = var[Xi].
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Then X = ∑i Xi satisfies

Pr[|X − µ| > kσ] ≤ 2 exp(− k2

4
),

where µ = ∑i µi and σ2 = ∑i σ2
i . Also, k ≤ 1

2 σ.

Simple Application: Coins and statistical polling

Suppose we flip n fair coins again. Let X be the number of heads we
see. We can use the above theorem to formally bound Pr(|X − n/2| ≥
ϵn) ≤ δ as long as n = O(log(1/δ)/ϵ2). In other words, if we want to
test whether or not a coin is within ϵ of fair (i.e. it is heads and tails,
each with probability > 1/2 − ϵ), then we can do so by averaging
O(log(1/δ)/ϵ2), and our test will only fail with probability δ.

Exercise: Show that Chebyshev’s inequality would predict that the
same fairness test requires O( 1

ϵ2δ2 ) – i.e. it gives an exponentially
worse dependence on δ!

More generally, opinion polls and statistical sampling rely on
tail bounds. Suppose there are n arbitrary numbers in [0, 1] If we
pick t of them randomly with replacement then the sample mean is
within an additive ϵ of the true mean with probability at least 1 − δ if
t > Ω( 1

ϵ2 log 1/δ).

Proof

Instead of proving Theorem 1, we prove a version for binary valued
variables that showcases the basic idea. We’ll give a complete proof
of this bound, which will be enough to prove a pretty powerful
hashing application.

Theorem 2. Let X1, X2, . . . , Xn be independent 0/1-valued random
variables and let pi = E[Xi], where 0 < pi < 1. Then the sum X =

∑n
i=1 Xi, which has mean µ = ∑n

i=1 pi, satisfies

Pr[X ≥ (1 + ϵ)µ] ≤ e
−ϵ2µ
3+3ϵ .

Exercise: Find an example setting of parameters pi where the
above theorem gives a stronger bound on the large deviation proba-
bility compared to Bernstein’s inequality.
Remark: It’s actually possible to prove a slightly tighter bound where

the right hand side is e
−ϵ2µ
2+ϵ . Additionally, there is an analogous

inequality that bounds the probability of deviation below the mean,

Pr[X ≤ (1 − ϵ)µ]. For that bound, the right hand side becomes e
−ϵ2µ

2

On homeworks, you’re free to use any versions of Chernoff bounds
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that you find in other course notes (or Wikipedia). There are many
variants.

Proof. Surprisingly, this inequality also is proved using the Markov
inequality, albeit applied to a different random variable.

We introduce a positive dummy variable t that we will set to some
non-negative value later. We observe that

E[etX ] = E[et ∑i Xi ] = E[∏
i

etXi ] = ∏
i

E[etXi ], (1)

where the last equality holds because the Xi random variables are
mutually independent. Now,

E[etXi ] = (1 − pi) + piet.

Therefore,

∏
i

E[etXi ] = ∏
i
[1 + pi(et − 1)] ≤ ∏

i
epi(et−1)

= e∑i pi(et−1) = eµ(et−1).
(2)

In the step with an inequality, we used that 1 + x ≤ ex. (This holds
for all x – it’s a surprisingly useful inequality to remember.) Finally,
apply Markov’s inequality to the random variable etX :

Pr[X ≥ (1 + ϵ)µ] = Pr[etX ≥ et(1+ϵ)µ] ≤ E[etX ]

et(1+ϵ)µ
=

e(e
t−1)µ

et(1+ϵ)µ
,

using lines (1) and (2) and the fact that t is positive. Since the state-
ment holds for any t, we can obtain a bound by setting t to any
positive value we wish. If we set t = log(1 + ϵ), we get:

Pr[X ≥ (1 + ϵ)µ] ≤ eµ[ϵ−log(1+ϵ)(1+ϵ)].

To see that this bound simplifies to give Theorem 2, we need a
quick case argument. Looking at the Taylor series of log(1 + ϵ), we
have:

log(1 + ϵ) = ϵ − ϵ2

2
+

ϵ3

3
− ϵ4

4
+ · · ·

and

log(1 + ϵ)(1 + ϵ) = ϵ +
ϵ2

2
− ϵ3

6
+

ϵ4

20
− · · ·

For ϵ ∈ [0, 1], we thus have log(1+ ϵ)(1+ ϵ) ≥ ϵ+ ϵ2/3. It follows that
eµ[ϵ−log(1+ϵ)(1+ϵ)] ≤ e−µϵ2/3 ≤ e−µϵ2/(3+3ϵ). On the other hand, when
ϵ > 1, log(1 + ϵ)(1 + ϵ) ≥ 1.38ϵ. It follow that eµ[ϵ−log(1+ϵ)(1+ϵ)] ≤
e−.38µϵ ≤ e−µϵ2/3ϵ ≤ e−µϵ2/(3+3ϵ).
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