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Matrix Concentration Inequalities and the Planted Clique Problem

In this lecture, our goal is to investigate methods to prove the spectral
norm bounds on random matrices that we saw in the last lecture.

Let’s focus on the following theorem that is a special case of what
we used in the last lecture.

Theorem 1. Let A be a n × n symmetric random matrix with each entry
being an independent random variable that takes the value 1 − p with
probability p and −p with probability 1 − p. Then, with probability 1 −
on(1), whenever p ≫ log4 n/n, we have:

∥A∥2 ≤ O(
√

pn)

We will introduce a general-purpose tool to prove such results that
will give a weaker version of the theorem. We will discuss methods
to prove the bounds of the above form in the next lecture.

The following key tool should be thought of as a generalization of
Chernoff-Hoeffding bounds:

Theorem 2 (Matrix Bernstein Inequality). Let A1, A2, . . . , AN be n × n
symmetric, real-entry, independent random matrices such that for each
1 ≤ i ≤ N, ∥Ai∥2 ≤ 1 with probability 1. Let σ2 =

∥∥E ∑i A2
i

∥∥
2 be the

“variance" parameter. Then,

Pr[

∥∥∥∥∥∑
i

Ai

∥∥∥∥∥
2

≥ τ] ≤ 2n exp(− τ2

σ2 + τ/3
).

Notice that the expectation is taken before taking the norm in
computing the variance term.

It is instructive to apply the theorem to n = 1 in which case
it gives a scalar inequality that is quite similar to the Chernoff-
Hoeffding bounds we studied in this course. The key difference in
the case of matrices is the dimension dependence in the bound on the
probability of deviation (i.e. the factor n multiplying the exponential
tail).

Here’s a corollary that is useful (it is an important exercise to
derive it yourself):

Corollary 1. Under the hypothesis of the theorem above, we have that with
probability at least 1 − 1/n100,∥∥∥∥∥∑

i
Ai

∥∥∥∥∥
2

≤ O(σ log n).

That is, the typical/high probability value of the spectral norm of
the sum ∑i Ai is about log n larger than the variance term σ.
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Let us apply the Matrix Bernstein inequality to prove a weaker
version of the main theorem we are after in this lecture. Notice that
the weaker bound requires no assumptions on p unlike the main
theorem above.

Corollary 2. Let A be a n × n symmetric random matrix with each entry
being an independent random variable that takes the value 1 − p with
probability p and −p with probability 1 − p. Then, with probability at least
1 − 1/n100,

∥A∥2 ≤ O(
√

pnlogn)

Proof. We want to write A as a sum of independent random matrices
and apply the Matrix Bernstein inequality. Towards this, let Bi,j be the
matrix with (i, j) and (j, i) entry equal to 1 − p with probability p and
−p with probability 1 − p. All other Bi,j entries are 0. Then, clearly,
Bi,js are independent random matrices and further A = ∑i<j Bi,j.

Next, notice that
∥∥Bi,j

∥∥
2 ≤ maxa

∥∥Bi,j(a; )
∥∥

1 ≤ 1 where
∥∥Bi,j(a; )

∥∥
1

is the maximum ℓ1 norm of any row of Bi,j.
Next, let’s compute the variance parameter. We first observe that

B2
i,j is a diagonal matrix with exactly two non-zero entries – the

(i, i) and the (j, j) entries. The entries themselves are (1 − p)2 with
probability p and p2 with probability 1 − p. The expectation of the
entry is thus p(1 − p)2 + (1 − p)p2 = p(1 − p).

Since B2
i,j is diagonal, so is ∑i<j B2

i,j. Further, each entry on the
diagonal is exactly equal to (n − 1)p(1 − p). The spectral norm of a
diagonal matrix is the maximum entry so is thus exactly (n − 1)p(1 −
p). Thus, σ2 = (n − 1)p(1 − p).

Thus, by Matrix Bernstein inequality, with probability at least
1 − 1/n100, the spectral norm of A is at most O(

√
np log n).

The Planted Clique Model

Back in 1976, only < 5 years after the discovery of the proof of the
Cook-Levin theorem, Karp proposed studying the task of finding
the maximum clique in a random graph. Precisely speaking, let
G(n, 1/2) be the distribution on graphs on n vertices where every
edge is included independently in the graph with probability 1/2.
Such a graph is dense — it has ∼ n2/4 edges in expectation.

Properties of such random graphs are extremely well-studied.
In particular, we know that the maximum clique in such graphs
is of size ∼ 2 log2 n with all but a negligible probability as n →
∞. Obtaining an estimate of Θ(log n) on the size of the maximum
clique is not so hard and is an application of the first and second-
moment method. First, calculate the expected number of k-cliques
for a parameter k by linearity of expectation. Notice that this turns
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out to be 2−(k
2)(n

k) and is ≪ 1 if k ≫ 2 log2 n which already implies
by Markov’s inequality that the maximum clique cannot be more
than O(log n) in size. To show that there is a clique of size ∼ 2 log2 n,
we need to compute the variance of the random variable that counts
the number of k-cliques. This takes some more effort but is still
elementary.

It turns out that the concentration of the maximum clique in
G(n, 1/2) is much stronger than the above argument might suggest.
Indeed, this random variable exhibits what is called a two-point
concentration inequality that says that the maximum clique takes
one of two possible values ⌊2 log2 n⌊ and ⌊2 log2 n⌊+1 with 1 − on(1)
probability.

So we know that G ∼ G(n, 1/2) has a maximum clique of size
2 log2 n. Can we find it?

There’s a simple greedy algorithm that finds a clique of size log2 n
(i.e. about half the size of the maximum clique): repeat until no
longer possible: 1) Let S = ∅, 2) take any vertex in the common
neighborhood of S and add it to S.

Exercise 1. Analyze the above algorithm and argue that it finds a clique of
size ≥ log2n − o(log2 n) with probability at least 0.99.

The idea of the analysis is easy: each time we add a vertex, the
size of the common neighborhood slashes by ∼ 1/2 and the edges
between the vertices in the common neighborhood are independent
of all the “randomness" we have seen so far.

Karp asked if we could improve on this algorithm. No improved
algorithm is known so far. There are lower bounds on restricted class
of methods that at least justify our failure in finding better algorithms
somewhat 1. 1

The Planted Clique Model Planted clique model G(n, 1/2, k) is a
variant of the above question of Karp. In this model, the input graph
is generated by taking a G ∼ G(n, 1/2), taking a fixed set of k vertices
and adding edges to create a k-clique on it. We choose k ≫ 2 log2 n so
the maximum clique in the new graph must be the added or planted
clique since there was no clique larger than 2 log2 n in the graph
before. The goal of the algorithm is to find the vertices in the planted
k-clique.

There is a simple quasipolynomial algorithm for the problem that
searches for 3 log2 n size cliques iteratively and observes that each
such clique must be a subclique of the planted k-clique.

Exercise 2. Flesh out the details of this simple method to recover the planted
k-clique
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The key algorithmic question is to find the planted k-clique (with
high probability over the draw of the graph) in polynomial time.

We will solve a related but easier question in this lecture. Given a
graph G that is either generated by taking a sample from G(n, 1/2)
(“random") or from G(n, 1/2, k) (“planted"), decide correctly which
model was used to generate it.

The following is an easy by key observation that relates the spec-
tral norm of a (variant of) the adjacency matrix of a graph and the
size of its largest clique.

Lemma 1. Let G be a graph with a clique of size ω. Let A be the ±1-
adjacency matrix of G. That is, A(i, j) = +1 if {i, j} is an edge in G and
−1 otherwise. Then,

∥A∥2 + 1 ≥ ω

Proof. Let λ1 ≥ λ2 ≥ . . . λn be the eigenvalues of A. By the Courant-
Fisher theorem, we know that

∥A∥2 ≥ λ1(A) = max
x ̸=0

x⊤Ax

∥x∥2
2

Thus, to prove the lemma, it is enough to find a vector x such that
the ratio in the RHS is at least ω − 1. We take the 0-1 indicator x vector
of the ω-clique, say S, in G. Note that ∥x∥2

2 = ω.
Further, x⊤Ax = ∑i,j xixj A(i, j) = ω(ω − 1) since only the {i, j}

such that i, j ∈ S contribute a non-zero value and in that case, in fact
each term contributes a +1 whenever i ̸= j.

Thus, x⊤Ax
∥x∥2

2
= ω(ω − 1)/ω = ω − 1 as desired.

We can now describe and analyze a distinguishing algorithm.

1. Construct the ±1 adjacency matrix of the input graph.

2. Compute ∥A∥2.

3. If ∥A∥2 ≤ C
√

n, output “random". Otherwise output “planted".

Lemma 2. There is a constant C > 0 such that the above distinguishing
algorithm succeeds correctly with high probability whenever k ≥ 2C

√
n.

Proof. The analysis is simple. Observe that A is a random matrix
with independent entries up to symmetry when G ∼ G(n, 1/2). So by
the theorem above (for p = q = 1/2), ∥A∥2 ≤ C

√
n for some constant

C > 0.
On the other hand, by the lemma above, in the case when k ≥

2C
√

n, the spectral norm of ∥A∥2 ≥ 2C
√

n.
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