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Average-Case Models: Planted Partition and Random Matrices

In this lecture, we study the problem of finding large communities in
networks. For a natural example, consider a social network such as
Facebook where one can naturally associated nodes with people and
edge with friends/acquaintance relationships. Communities in such
graphs may naturally correspond to sociological clusters – people
with the same workplace, or geographical location, or studying at the
same university and so on. One can thus imagine that given a graph
representation of a social network finding such communities may be
a useful primitive.

A natural abstraction of a community is a clique in a graph (a
collection of vertices that are all connected). Can we find large cliques
in graphs? Unfortunately, in the worst-case this problem turns out
to be hard. Not just in the exact sense but also for approximation.
More precisely, it turns out that for any ϵ > 0, given a graph that is
promised to contain a n1−ϵ size clique, it is NP-hard to find a clique
that contains more than nϵ vertices. Our best known algorithms in
fact can only find a logO(1)(n) size cliques even in graphs promised
to contain a Õ(n) size clique.

We may contest that clique is a rather stringent demand and for
finding communities, we may be okay with finding “dense sub-
graphs". But it turns out that the strong hardness results continue
to hold even for finding densest subgraphs (we will omit a formal
definition here).

The strong hardness of approximation that we see for clique is
not all that rare for expressive/interesting optimization problems.
However, they do not preclude the search for good algorithms; they
suggest that we model our input instances in further detail. And
this effort to better model instances of worst-case hard optimization
problems now forms a broad research area called beyond the worst-case
analysis of algorithms.

In today’s class, we will see an example of how to model input
instances with community structure. This model might appear sim-
plistic but leads to new spectral tricks for finding large communities
that do find broad usage in applications.

Definition 1 (Stochastic Block Model). Let G(V, E) be a random graph
with vertices V = 1, . . . , n. Let S, T form a bisection of V. I.e. S, T ⊂ V
with S ∪ T = V, S ∩ T = ∅ and |S| = |T| = n/2. For probabilities p > q,
construct G by adding edge (i, j) independently with probability Yij, where:

Yij =

p if both i, j ∈ T or i, j ∈ S

q if i ∈ T, j ∈ S or i ∈ S, j ∈ T.
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We can think of S and T as disjoint “communities” in our graph. Nodes are
connected randomly, but it is more likely that they are connected to members
of their community than members outside their community.

Our goal is to design a spectral method to recover these under-
lying communities. Today, we will just give a sketch of an algo-
rithm/proof.

Let’s introduce another matrix B ∈ Rn×n defined as follows:

Bij =

p if i, j ∈ T or i, j ∈ S

q if i ∈ T, j ∈ S or i ∈ S, j ∈ T.

It is not hard to see that B = E[A] + pI, where I is an n × n identity.
Accordingly, at least in expectation, A has the eigenvectors as B.
What are these eigenvectors?

B is rank two, so it only has two, u1 and u2, where:

u1(i) =
1√
n

1 ∀i,

u2(i) =


1√
n 1 ∀i ∈ S

1√
n − 1 ∀i ∈ T.

Bu1 = n
2 (p + q)u1 and Bu2 = n

2 (p − q)u2. In this case, u1 and u2 are
also B’s singular vectors.

So, if we could compute B’s eigenvectors, we could immediately
recover our community by simply examining u2. Of course, we don’t
have access to B, but we do have accesses to a perturbed version of
the matrix via:

Â = A + pI.

Consider R = B − Â. Classic perturbation theory results in linear
algebra tell us that if ∥R∥2 is small, then Â’s eigenvalues and eigen-
vectors will be close to those of B.

Let B have eigenvectors u1, . . . , un and eigenvalues λ1, . . . , λn. Let
Â have eigenvectors û1, . . . ûn and eigenvalues λ̂1, . . . , λ̂n.

Claim 1. If B and Â are real symmetric matrices with ∥B − Â∥2 ≤ ϵ, ∀i,

|λi − λ̂i| ≤ ϵ.

In words, if Â and B are close in spectral norm, their eigenvalues
are close.

The proof of this claim is based on the following Courant-Fisher
theorem, which is very useful in general and shows that eigenvalues
of a real symmetric matrix arise as solutions to a natural optimization
problem. We recall that for any non-zero vector x, x⊤Mx

∥x∥2
2

is called the

Rayleigh quotient of x with respect to M.
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Theorem 1 (Courant-Fisher Theorem). Let M be a symmetric n × n
matrix with eigenvalues λ1 ≥ λ2 ≥ . . . λn. Then,

λk = max
S: subspace ,dim(S)=k

min
x∈S,x ̸=0

x⊤Mx

∥x∥2
2

= min
S: subspace dim(S)=n−k+1

max
x∈S,x ̸=0

x⊤Mx

∥x∥2
2

Proof. We will only sketch the proof of the first equality since the
second is similar. Let u1, u2, . . . , un be the unit length eigenvectors of
M corresponding to the eigenvalues λ1, λ2, . . . , λn.

To prove equality, we will prove that the LHS is at least the RHS
and is at most the RHS separately.

For the first, it is enough to show that there is a subspace S of
dimension k such that every vector in x makes the Rayleigh quotient
at least λk. For this, choose S to be the span of {u1, u2, uk}. Any
vector x in the span can be written as ∑i≤k αiui for ∑i≤k α2

i = 1.
Finally, observe that by direct computation x⊤Mx = ⟨x, Mx⟩ =

∑i α2
i λi ≥ λk ∑i≤k α2

i = λk.
For the second, consider any subspace S of dimension n − k +

1. The key observation is that S must intersect the k-dimensional
subspace spanned by {u1, u2, . . . , uk} in a non-zero vector v. Because
if not, then the direct sum of S and the span of {u1, u2, . . . , uk} will be
of dimension n − k + 1 + k > n. Then v can be written as ∑i≤k αiui as
above and v⊤Mv ≥ λk by the same argument as above.

We will state without proof (but this will be a homework problem)
the following consequence of Courant-Fisher theorem that immedi-
ately implies the above claim.

Corollary 1. Let M, M′ be two symmetric, real n × n matrices. Then, for
any 1 ≤ k ≤ n,

λk(M) + λn(M′) ≤ λk(M + M′) ≤ λk(M) + λ1(M′)

Exercise 1. Prove the Corollary from the theorem above and apply it to
complete the proof of the eigenvalue closeness claim about Â and B above.

For our application, we further need that the matrices eigenvectors
are close. Below is a classic result quantifying this – you can find a
simple proof of a slightly weaker version in 1. 1

Theorem 2 (Davis-Kahan, 1970). Suppose B and Â are real symmetric
matrices with ∥B − Â∥2 ≤ ϵ. Let θi denote the angle between ui and ûi. For
all i,

sin θi ≤
ϵ

minj ̸=i |λi − λj|
.
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Let’s unpack this claim. It says that if B and Â are close in spectral
norm, their corresponding eigenvectors are close. However, the
distance is effected by a factor of 1/|λi − λj|. This makes sense –
suppose λi < λi+1 + ϵ. Then a pertubation with spectral norm
ϵ could cause the ui and ui+1 to “swap” order – specifically just
add ϵui+1uT

i+1 to B to cause such a change. In the perturbed matrix,
ûi = ui+1, which is orthogonal to ui.

Fortunately, in our case, we have a gap between B’s eigenvalues –
in particular, |λ2 − λ1| ≥ nq and |λ2 − 0| = n

2 (p − q). Let’s assume a
challenging regime where q is close to p and thus n

2 (p − q) ≤ nq).

A simple corollary of Claim 2 is that ∥ui − ûi∥2 ≤
√

2ϵ
minj ̸=i |λi−λj |

.

As an estimate for our community indicator vector u2, let’s con-
sider sign(û2). Suppose this estimate differs from u2 on k entries.
Then it must be that:

∥û2 − µ2∥2 ≥
√

k
n

So, by the eigenvector perturbation argument, we can bound

k ≤ O
(

ϵ2

n(p − q)2

)

Eigenvalues of Random matrices

So we are left to bound ∥R∥2. R = B − Â is a random matrix with
half of its entries equal to p with probability (1 − p) and (p − 1) with
probability p, and the other half equal to q with probability (1 − q)
and (q − 1) with probability q.

It is possible to prove:

Theorem 3 (Van Vu, 2007). If p ≥ O(log4 n/n), then with high probabil-
ity,

∥R∥2 ≤ O(
√

pn)

You will prove a very related (but slightly looser statement on the
problem set).

With this bound in place, we immediately have that our spectral
algorithm recovers the hidden partition with a number of mistakes
bounded by:

k = O
(

p
(p − q)2

)
.

This is very good. Even when q = p −O(1/
√

n) (e.g. our probabilities
are very close, so the communities should be hard to distinguish) we
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only make O(n) mistakes – i.e. we can guess a large constant fraction
of the community identities correctly.

In the next lecture, we will discuss the spectral norm upper bound
above in more detail. Right now, let us see another example applica-
tion of it to yet another average-case model.

The Planted Clique Model

Back in 1976, only < 5 years after the discovery of the proof of the
Cook-Levin theorem, Karp proposed studying the task of finding
the maximum clique in a random graph. Precisely speaking, let
G(n, 1/2) be the distribution on graphs on n vertices where every
edge is included independently in the graph with probability 1/2.
Such a graph is dense — it has ∼ n2/4 edges in expectation.

Properties of such random graphs are extremely well-studied.
In particular, we know that the maximum clique in such graphs
is of size ∼ 2 log2 n with all but a negligible probability as n →
∞. Obtaining an estimate of Θ(log n) on the size of the maximum
clique is not so hard and is an application of the first and second
moment method. First, calculate the expected number of k-cliques
for a parameter k by linearity of expectation. Notice that this turns
out to be 2−(k

2)(n
k) and is ≪ 1 if k ≫ 2 log2 n which already implies

by Markov’s inequality that the maximum clique cannot be more
than O(log n) in size. To show that there is a clique of size ∼ 2 log2 n,
we need to compute the variance of the random variable that counts
the number of k-cliques. This takes some more effort but is still
elementary.

It turns out that the concentration of the maximum clique in
G(n, 1/2) is much stronger than the above argument might suggest.
Indeed, this random variable exhibits what is called a two-point
concentration inequality that says that the maximum clique takes
one of two possible values ⌊2 log2 n⌊ and ⌊2 log2 n⌊+1 with 1 − on(1)
probability.

So we know that G ∼ G(n, 1/2) has a maximum clique of size
2 log2 n. Can we find it?

There’s a simple greedy algorithm that finds a clique of size log2 n
(i.e. about half the size of the maximum clique): repeat until no
longer possible: 1) Let S = ∅, 2) take any vertex in the common
neighborhood of S and add it to S.

Exercise 2. Analyze the above algorithm and argue that it finds a clique of
size ≥ log2n − o(log2 n) with probability at least 0.99.

The idea of the analysis is easy: each time we add a vertex, the
size of the common neighborhood slashes by ∼ 1/2 and the edges
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between the vertices in the common neighborhood are independent
of all the “randomness" we have seen so far.

Karp asked if we could improve on this algorithm. No improved
algorithm is known so far. There are lower bounds on restricted class
of methods that at least justify our failure in finding better algorithms
somewhat 2. 2

The Planted Clique Model Planted clique model G(n, 1/2, k) is a
variant of the above question of Karp. In this model, the input graph
is generated by taking a G ∼ G(n, 1/2), taking a fixed set of k vertices
and adding edges to create a k-clique on it. We choose k ≫ 2 log2 n so
the maximum clique in the new graph must be the added or planted
clique since there was no clique larger than 2 log2 n in the graph
before. The goal of the algorithm is to find the vertices in the planted
k-clique.

There is a simple quasipolynomial algorithm for the problem that
searches for 3 log2 n size cliques iteratively and observes that each
such clique must be a subclique of the planted k-clique.

Exercise 3. Flesh out the details of this simple method to recover the planted
k-clique

The key algorithmic question is to find the planted k-clique (with
high probability over the draw of the graph) in polynomial time.

We will solve a related but easier question in this lecture. Given a
graph G that is either generated by taking a sample from G(n, 1/2)
(“random") or from G(n, 1/2, k) (“planted"), decide correctly which
model was used to generate it.

The following is an easy by key observation that relates the spec-
tral norm of a (variant of) the adjacency matrix of a graph and the
size of its largest clique.

Lemma 1. Let G be a graph with a clique of size ω. Let A be the ±1-
adjacency matrix of G. That is, A(i, j) = +1 if {i, j} is an edge in G and
−1 otherwise. Then,

∥A∥2 + 1 ≥ ω

Proof. Let λ1 ≥ λ2 ≥ . . . λn be the eigenvalues of A. By the Courant-
Fisher theorem, we know that

∥A∥2 ≥ λ1(A) = max
x ̸=0

x⊤Ax

∥x∥2
2

Thus, to prove the lemma, it is enough to find a vector x such that
the ratio in the RHS is at least ω − 1. We take the 0-1 indicator x vector
of the ω-clique, say S, in G. Note that ∥x∥2

2 = ω.
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Further, x⊤Ax = ∑i,j xixj A(i, j) = ω(ω − 1) since only the {i, j}
such that i, j ∈ S contribute a non-zero value and in that case, in fact
each term contributes a +1 whenever i ̸= j.

Thus, x⊤Ax
∥x∥2

2
= ω(ω − 1)/ω = ω − 1 as desired.

We can now describe and analyze a distinguishing algorithm.

1. Construct the ±1 adjacency matrix of the input graph.

2. Compute ∥A∥2.

3. If ∥A∥2 ≤ C
√

n, output “random". Otherwise output “planted".

Lemma 2. There is a constant C > 0 such that the above distinguishing
algorithm succeeds correctly with high probability whenever k ≥ 2C

√
n.

Proof. The analysis is simple. Observe that A is a random matrix
with independent entries up to symmetry when G ∼ G(n, 1/2). So by
the theorem above (for p = q = 1/2), ∥A∥2 ≤ C

√
n for some constant

C > 0.
On the other hand, by the lemma above, in the case when k ≥

2C
√

n, the spectral norm of ∥A∥2 ≥ 2C
√

n.
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