
COS521, Fall 2024

Spectral Algorithms - Iterative Methods

In this lecture we will see how studying the spectrum of a matrix can help us design algorithms.
In particular we will study iterative methods, which approximate the solution to certain problems
by repeatedly refining a solution. We will show how these methods behave nicely, by proving
guarantees on their convergence based on the spectrum of some matrix. The two problems we will
focus on are computing eigenvalues of a matrix and solving linear systems of equations. 1

Essential Background in Matrix and Spectral Theory

We will start by recalling some important background definitions and results from linear algebra.

Definition 1. A matrix M is positive semi-definite if xTMx ≥ 0 for all vectors x ∈ Rn. For PSD
matrices, all eigenvalues are non-negative.

For any positive integer k, the eigenvalues of Mk are the k-th powers of the eigenvalues of M .
Formally, if λ is an eigenvalue of M with corresponding eigenvector v, then:

Mkv = (Mk−1M)v = Mk−1(λv) = λMk−1v = · · · = λkv

Thus, λk is an eigenvalue of Mk with the same eigenvector v.

Spectral Theorem for Symmetric Matrices

Theorem (Spectral Theorem). Let M be a n by n real symmetric matrix M . Then, there exist n
real numbers λ1 ≥ λ2 ≥ . . . λn and n unit vectors v1, v2, . . . , vn that form an eigenbasis of M . In
other words, Mvi = λivi and all the vi are mutually orthogonal.

1These notes are based on notes from https://lucatrevisan.github.io/books/expanders-2016.pdf and from the
book http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf.

1

https://lucatrevisan.github.io/books/expanders-2016.pdf
http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf

COS 521, Fall 2024 Spectral Algorithms

This allows the matrix M to be diagonalized as:

M = V ΛV T

where V is an orthogonal matrix of eigenvectors, and Λ is a diagonal matrix containing the eigen-
values of M .

Rayleigh Quotient

Definition 2 (Rayleigh Quotient). Given a vector x ∈ Rn and a matrix M , the Rayleigh quotient
of x is defined as:

xTMx

xTx

For Mvi = λvi:

vTi Mvi

vTi vi
=
vTi λivi

vTi vi
= λi.

So the Rayleigh quotient of an eigenvector gives us its eigenvalue. But more generally, we can
use any vector to find bounds on eigenvalues of a matrix through its Rayleigh quotion. This is
formalized by the following well-known theorem, which gives us a variational characterization of
eigenvalues:

Theorem (Courant-Fischer Theorem). Let M be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn. Then,

λk = max
S⊆Rn, dim(S)=k

min
x∈S, x 6=0

xTMx

xTx
= min

T⊆Rn, dim(T)=n−k+1
max

x∈T, x6=0

xTMx

xTx
,

where the maximization and minimization are over subspaces S and T of Rn.

The following is a special case of the above.

Corollary. Let M be a symmetric matrix with maximum eigenvalue λ1. Then, for any vector
v ∈ Rn:

vTMv

vT v
≤ λ1.

(Operator) Norm of a Matrix

Definition 3 (Operator norm). Let A be an n by n matrix. The operator norm of A, denoted by
‖A‖, is defined as:

‖A‖ = sup
‖x‖≤1

‖Ax‖

where ‖x‖ denotes the Euclidean norm of x.

2

COS 521, Fall 2024 Spectral Algorithms

Equivalent Definition: The operator norm can also be expressed in terms of the supremum over
all non-zero vectors:

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

Special Case (Spectral Norm): When A is a symmetric matrix, the operator norm induced by
the Euclidean norm is equal to the largest absolute eigenvalue of A. Specifically, if A is symmetric
and has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, then:

‖A‖ = |λ1|

Some properties:

� ‖cA‖ = |c| · ‖A‖ for any scalar c.

� ‖AB‖ ≤ ‖A‖ · ‖B‖.

� ‖Av‖ ≤ ‖A‖ · ‖v‖ for any vector v ∈ Rn.

Approximating Eigenvalues through Iterative Methods

Suppose we are given an n by n PSD matrix M and we wish to compute its largest eigenvalue.
Note that since this matrix is PSD, it is a symmetric matrix and all of it’s eigenvalues are real and
nonnegative. Using the same notation as before, assume λ1 ≥ λ2 ≥ . . . ≥ 0 are the n eigenvalues
of M . Then, our goal is efficiently compute λ1.

A random Gaussian vector x ∈ Rn is a vector such that each entry is an independently chosen
N (0, 1) random variable. Now, here is a simple algorithm (also known as the Power Method) that
approximates the value of λ1:

Input: A PSD matrix M .
Pick a random Gaussian vector x0 ∈ Rn.
for i = 1→ k do

xi ←Mxi−1
end for
return

xTkMxk
xTk xk

So the algorithm first picks a random Gaussian vector, then it repeatedly applies the matrix M
and it outputs the Rayleigh quotient of the resulting vector.

Note that the runtime of this algorithm is O (k · nnz(M)), where nnz(N) denotes the number of
nonzero entries of M (since each iteration corresponds to a matrix-vector product). So if M is a
dense matrix this is O

(
kn2

)
, but if M is sparse, this is much better. But now the question is: how

big does k have to be in order for this to be a good approximation? The following theorem provides
the answer:

Theorem 1. Let M be an n by n PSD matrix. Then, for every positive integer k and ε > 0, with
constant probability

xTkMxk

xTk xk
≥ λ1(1− ε)

1 + Ω(1)n(1− ε)2k
.

3

COS 521, Fall 2024 Spectral Algorithms

So, if we pick k = O
(
logn
ε

)
, the above is λ1(1−O (ε)), i.e. an ε-approximation of λ1.

The theorem will follow by combining the two following lemmas.

Lemma 2. Let M be an n by n PSD matrix. Then, for every positive integer k, ε > 0, and x ∈ Rn,
if we let y = Mkx we have

yTMy

yT y
≥ λ1(1− ε)

1 + ‖x‖2

〈x,v1〉2
(1− ε)2k−1

,

where v1 is the eigenvector of eigenvalue λ1 of M , i.e. Mv1 = λ1v1.

Proof. Our goal will be to prove a lower bound to yTMy and an upper bound to yT y, the combi-
nation of which shall give us the lemma.

Suppose that v1, v2, . . . , vn are the n eigenvectors of M corresponding respectively to λ1, λ2, . . . , λn,
so Mvi = λivi. Let’s write x in the eigenbasis of M

x =
∑
i

〈x, vi〉 vi.

Our proof strategy will involve dividing the eigenvalues of M into two groups: λ1, . . . , λ` is the
group of the ` eigenvalues that are at least λ1(1 − ε), and λ`+1, . . . λn is the group of eigenvalues
that are less than λ1(1− ε).

So let’s us first lower bound yTMy. Observe that yTMy = xT (Mk)TMMkx = xTM2k+1x, since
M is symmetric. Let’s analyze xTM2k+1x using the eigenbasis of M :

xTM2k+1x =

(∑
i

〈x, vi〉 vi

)T
M2k+1

∑
i

〈x, vi〉 vi

=

(∑
i

〈x, vi〉 vi

)T∑
i

〈x, vi〉λ2k+1
i vi

=
∑
i

〈x, vi〉2 λ2k+1
i

≥
∑̀
i

〈x, vi〉2 λ2k+1
i

≥ λ1(1− ε)
∑̀
i

〈x, vi〉2 λ2ki .

And now we need to upper bound yT y. By a similar observation as above, yT y = xTM2kx, so:

4

COS 521, Fall 2024 Spectral Algorithms

xTM2kx =
∑
i

〈x, vi〉2 λ2ki

=
∑̀
i=1

〈x, vi〉2 λ2ki +
n∑

i=`+1

〈x, vi〉2 λ2ki

≤
∑̀
i=1

〈x, vi〉2 λ2ki + (λ1(1− ε))2k
n∑

i=`+1

〈x, vi〉2

≤
∑̀
i=1

〈x, vi〉2 λ2ki + λ2k1 (1− ε)2k ‖x‖2 .

The last inequality comes from the fact that ‖x‖2 =
∑

i 〈x, vi〉
2, for any basis v. Combining both

bounds we obtain:

yTMy

yT y
≥

λ1(1− ε)
∑`

i 〈x, vi〉
2 λ2ki∑`

i=1 〈x, vi〉
2 λ2ki + λ2k1 (1− ε)2k ‖x‖2

=
λ1(1− ε)

1 +
λ2k1 (1−ε)2k‖x‖2∑`

i=1〈x,vi〉
2λ2ki

≥ λ1(1− ε)

1 +
λ2k1 (1−ε)2k‖x‖2

〈x,v1〉2λ2k1

=
λ1(1− ε)

1 + ‖x‖2

〈x,v1〉2
(1− ε)2k

.

This concludes the proof.

Remark 3. The inequalities we used above are only true because M is PSD. In particular, note that∑
i 〈x, vi〉

2 λ2k+1
i ≥

∑`
i 〈x, vi〉

2 λ2k+1
i isn’t necessarily true if some of the eigenvalues are negative.

It should now be clear that if we lower bound ‖x‖
〈x,v1〉2

we obtain the theorem we want, so let’s do

that.

Lemma 4. Let x ∈ Rn be a random Gaussian vector and v be any unit vector (so ‖v‖ = 1). Then
with constant probability we have:

‖x‖2

〈x, v〉2
≤ Ω(n)

Proof. We will proceed by providing an upper bound to ‖x‖2 and a lower bound to 〈x, v〉2.

Let’s first consider ‖x‖2. Observe that ‖x‖2 =
∑

i g
2
i , where gi are independent Gaussian random

variables. We claim that the probability that ‖x‖2 is greater than 2n is exponentially small. We

5

COS 521, Fall 2024 Spectral Algorithms

are not going to actually prove this, but this follows by a type of Chernoff bound. Note that the
standard Chernoff bound only works for bounded random variables, which isn’t the case here.

Finally, we analyze 〈x, v〉2. Observe that the inner product is a linear combination of independent
standard Gaussians, so it is itself a Gaussian. In fact, a calculation of its mean and variance shows
that it is distributed as a standard Gaussian. Thus, with constant probability it’s at least any
constant (say 2).

Note that as long as we can show a lower bound on ‖x‖2

〈x,v〉2 , then any distribution on x works. For

instance, another good distribution to consider is x ∼ {−1, 1}n, i.e. each coordinate has an equal
probability of being −1 or 1.

Remark 5. If we want to find any other eigenvalues/eigenvectors, we can repeat the same method
to find an orthogonal vector orthogonal. This works because of the Courant-Fischer theorem.

More formally, say x(1) is the result of applying the power method an adequate number of times.
Pick some random Gaussian vector x ∈ Rn and make it orthogonal to x(1) by setting x0 = x−x(1) ·〈
x, x(1)

〉
. Now, repeat the power method starting from x0. After an adequate number of iterations

the resulting vector would have Rayleigh quotient close to λ2.

Remark 6. One downside of the method described here is that it’s not useful in practice. The
main reason is that Mkx grows exponentially fast, and so it’s unfeasible to represent the value of
xk for large k. To fix this, we can normalize the value after each step of the iteration, namely we
can set x′k = Mxk−1 and then xk = x′k/ ‖x′k‖. We can also show this process converges, but the
convergence rate is a bit different, it will depend on the ratio λ1/λ2.

Solving Linear Equations through Iterative Methods

We now turn to another fundamental problem on matrices: solving systems of linear equations. So
suppose we are given a matrix A and a vector b, and we wish to find x such that Ax = b. For
simplicity, let’s assume A is an n by n PSD matrix, and so both x and b are vectors in Rn (it will
be clear why we are making this assumption soon). We know how to find x in O

(
n3
)

time using
Gaussian elimination, but what if we want a more efficient method? We will describe a simple
iterative method known as First-Order Richardson Iteration that does so.

Before we describe the algorithm, we will make a simple observation. Consider any parameter α,
then αAx = αb implies x = (I − αA)x + αb, where I is the identity matrix. From this, we define
the following process:

Input: A PSD matrix M .
Let x0 = 0, the 0 vector.
for i = 1→ k do

xi ← (I − αA)xi−1 + αb
end for
return xk

Note that the runtime of this algorithm is O (k · (n+ nnz(A))). Like in the power method example,
we are interested in analyzing the convergence of this method.The following theorem provides the
answer:

6

COS 521, Fall 2024 Spectral Algorithms

Theorem 7. Let A be an n by n PSD matrix, and b ∈ Rn. Let α be such that ‖I − αA‖ < 1.
Then, for every positive integer k and ε > 0,

‖x− xk‖
‖x‖

≤ exp

(
− 2λnk

λ1 + λn

)
,

where x is the solution to Ax = b, and λi are the eigenvalues of A.

Note that if we want an ε-approximation of the solution (in terms of the above measure of conver-

gence), we then need to run this process for k =
(
λ1
2λn

+ 1
2

)
ln(1/ε). Note that the quantity λ1

λn
is

often known as the condition number. It is an important quantity associated to a matrix and it is
often relevant to the convergence of iterative methods.

Proof. I−αA is symmetric, and so its norm is the maximum absolute value of its eigenvalues. The
eigenvalues of I − αA are 1− αλi, and the ‖I − αA‖ is maxi |1− αλi| = max(1− αλ1, 1− αλn).

This is minimized by taking

α =
2

λn + λ1
,

in which case the smallest and largest eigenvalues of I − αA become

±λ1 − λn
λn + λ1

,

and the norm of I − αA becomes

1− 2λn
λn + λ1

.

To show that xk converges to the solution, x, consider the difference x− xk. We have

x− xk = ((I − αA)x+ αb)− ((I − αA)xk−1 + αb) = (I − αA)(x− xk−1).

Thus, by repeatedly applying the above, we get

x− xk = (I − αA)k(x− x0) = (I − αA)kx.

and finally we obtain

‖x− xk‖ =
∥∥∥(I − αA)kx

∥∥∥
≤
∥∥∥(I − αA)k

∥∥∥ ‖x‖
≤
(

1− 2λn
λn + λ1

)k
‖x‖

≤ exp (−2λnk/(λn + λ1)) ‖x‖ .

Remark 8. One interesting way of interpreting the above iterative method is through the lens of
gradient descent. Let’s write our linear system as A1/2x = A−1/2b. Now, consider the objective

function 1
2

∥∥A1/2x−A−1/2b
∥∥2 and let’s try to minimize it. If we take the gradient of this function,

we get Ax − b, so one step of gradient descent with learning rate α is xk+1 = xk − α(Axk − b),
which is exactly our iteration step.

7

