
P R I N C E T O N C O S 5 2 1 :
A DVA N C E D A L G O R I T H M
D E S I G N

Randomized Minimum Cut

Today’s topic is simple but gorgeous: Karger’s min-cut algorithm 1 1 David R. Karger. Global min-cuts in
rnc, and other ramifications of a simple
min-cut algorithm. In Proceedings of the
Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’93, page
21–30, USA, 1993. Society for Industrial
and Applied Mathematics. ISBN
0898713137

and its extension. It is a simple randomized algorithm for finding the
global minimum cut in an undirected graph: a (non-empty) subset of
vertices X in which the set of edges leaving S, denoted E(X, X) has
minimum size among all subsets. You may have seen an algorithm
for this problem in your undergrad class that uses maximum flow.
Karger’s algorithm is elementary and a great introduction to random-
ized algorithms. For simplicity, we will consider unweighted graphs
(the algorithm also works for weighted graphs).

Basic Operations

Karger’s algorithm makes use of the following basic operations.

1. Select a random edge: For this lecture (and most lectures), we
won’t stress about how the algorithm accomplishes this. For
instance, the algorithm might have the ability to select a random
number between 1 and m = |E|, and can select the edge indexed
by the random number. We will assume for the purpose of this
class that the algorithm can select a random edge in time O(1).

2. Contract an edge: This operation takes two existing nodes in
the graph with an edge between them and “merges” them into a
super-node. That is, the operation Contract(G = (V, E), e = {u, v})
takes as input a graph G with vertex set V and edges E, and
outputs a new graph G′ with vertex set V \ {u, v} ∪ Su,v. Thus, it
replaces the two nodes u and v with a supernode Su,v. The new
edge set contains all edges between two nodes in V \ {u, v}. For all
edges between u and x /∈ {u, v}, add an edge between Su,v and x.
Ditto for all edges between v and x /∈ {u, v}. Note that this may
create multiple edges between two nodes, which is intended. But
do not include edges from Su,v to itself (so no self-loops). In this
lecture, we will also not stress about how exactly to implement

2

this operation, but note that it can be done in time O(n) (say, if the
graph is described to you in the adjacency list format).

The (Core) Algorithm

The algorithm is straightforward: Pick a random edge and contract
it. Repeat until the graph has only two supernodes, which is out-
put as our guess for min-cut. That is if, upon termination, the two
remaining nodes are SX and SX̄, output (X, X̄) as the guess for the
minimum cut.

To guarantee a high success probability, re-run the algorithm
from scratch k times independently, and output whichever guess
(X1, X̄1), . . . , (Xk, X̄k) is the most minor cut. k will be chosen shortly.

Intuition

Before we get into a formal proof (itself quite simple), here is some
brief intuition. We say that a given cut (X, X̄) survives contraction
e = {u, v} if |X ∩ {u, v}| ̸= 1. That is, a cut survives the contraction
of edge e as long as edge e is between two nodes on the same side of
the cut. The idea is that once an edge that crosses the cut (X, X̄) is
contracted, we have guaranteed that we cannot possibly output cut
(X, X̄) at the end. On the other hand, if we never contract an edge
that crosses cut (X, X̄), then (X, X̄) will be exactly the cut we output.

So, the idea is that we output a cut if and only if it survives all n − 2
contractions. At every step, the cut that is most likely to survive is
the global min-cut, precisely because it has fewer edges that "kill" it
than all other cuts.

This algorithm also looks like a great heuristic to try on all kinds
of real-life graphs where one wants to cluster the nodes into “tightly-
knit”portions. For example, social networks may cluster into commu-
nities, graphs capturing the similarity of pixels may cluster to give
different portions of the image (sky, grass, road, etc.). Thus, instead
of continuing Karger’s algorithm until you have two supernodes left,
you could stop it when there are k supernodes and try to understand
whether these correspond to a reasonable clustering.

Analysis

We begin with the following observation, which is more of a defini-
tion than observation:

Observation 1. Let G′ be obtained by a sequence of edge contractions of
G. Then there is a one-to-one correspondence between cuts (Y, Ȳ) of G′ and
cuts (X, X̄) of G that survived all contractions (note that this is an injection

3

from cuts in G′ to cuts in G but not a bijection). Namely, the cut (Y, Ȳ) in
G′ corresponds to the cut X = ∪y∈YS(y), where S(y) denotes the original
vertices of G that were contracted to form the super-node y in G′.

The key corollary in the analysis of Karger’s algorithm follows the
following simple lemma:

Lemma 1. Let G be an undirected graph, potentially with multi-edges but
not self-loops, and let c be the value of the min-cut of G. Then |E(G)| ≥
nc/2.

Proof. The cut ({v}, E \ {v}) is a potential min-cut, and has value
exactly d(v) (the degree of v). Therefore, d(v) ≥ c for all v. We can
write |E| = ∑v d(v)/2 ≥ nc/2.

Corollary 1. Let G be an undirected graph, potentially with multi-edges but
not self-loops. Let (X, X̄) be any minimum cut of G. Then, the probability
that (X, X̄) survives the contraction of a random edge is at least (1 − 2/n).

Proof. By Lemma 1, there are at least cn/2 edges that might be
selected. Exactly c of them would kill (X, X̄). So the probability
that (X, X̄) survives is at least 1 − c

cn/2 = 1 − 2/n.

Now we can conclude with the main theorem:

Theorem 1. [Karger 1993] For any graph G, and any min-cut (X, X̄) of G,
Karger’s algorithm outputs (X, X̄) with probability at least 2

n(n−1) .

Proof. We know that Karger’s algorithm outputs (X, X̄) if and only
if X survives every contraction. The probability that X survives the
first contraction is 1 − 2/n by Corollary 1, and the probability that it
survives the ith contraction, conditioned on surviving the first i − 1
is 1 − 2/(n − i − 1) (also by Corollary 1). So the probability that it
survives every contraction is at least:

n−2

∏
i=1

(1 − 2/(n − (i − 1))) =
n−2

∏
i=1

(n − i − 3)/(n − i − 1) =
2

n(n − 1)
.

The last equality is due to a telescoping product. Every numerator
“cancels" with a denominator two steps down the way, so the last two
numerators and the first two denominators remain.

Each iteration succeeds in finding a minimum cut only with
probability ∼ 2/n2 which seems honestly terrible. But there’s a
simple fix: repeat the algorithm with independent randomness
k times and take the minimum cut of all the cuts output in the k
iterations.

4

Lemma 2. The chance that the algorithm fails to output a particular
min cut cut(X) in all of the k iterations is at most (1 − 2/n2)k. Thus, if
k ≥ O(n2 ln 1/ϵ), then the algorithm succeeds in outputting a fixed min
cut with probability at least 1 − ϵ.

The proof of this lemma is immediate. The last line is based on a
useful inequality: 1 + x ≤ ex for every x. Thus, (1 − 2/n2)k ≤ e−2k/n2

.
Thus, to guarantee that the min-cut survived at least one iteration

except with probability ϵ, we would need to repeat the procedure
independently Θ(n2 ln(1/ϵ)) times. The runtime of each iteration is
O(n2) because we do n − 2 contractions, each of which takes time
O(n), so the total runtime of the algorithm is O(n4), which is good
(poly time!) but sad.

There is a non-algorithmic consequence that we next point out that
is a surprising outcome of the analysis above:

Lemma 3. The number of min cuts in any graph is at most (n
2).

Proof. Consider the set of all min cuts. For each cut, say (X, X) in this
list, Theorem 1 says that the random contraction algorithm outputs
(X, X) with probability 2/n(n − 1). For different cuts, these are
mutually exclusive events. Thus, if the number of min cuts is t then
2t/n(n − 1) ≤ 1 or t ≤ (n

2).

At first blush, this is a somewhat surprising result. The total
number of (non-empty/non-full) cuts in any graph is 2n−1. But the
above lemma says that at most ∼ n2 can be minimum cuts!

We will see a surprising application of this purely combinatorial
result later in this course: every graph G can be approximated by a
weighted graph H with O(nlogn) edges so that the weighted size of any
cut in H is a (1 ± ϵ)-approximation to the same cut in G. That is, for any
problem that has to do with cuts, you can replace a dense graph by
a super sparse graph – speeding up algorithms along with many
other applications. Such results (called graph sparsification 2) form 2 András A. Benczúr and David R.

Karger. Approximating s-t minimum
cuts in Õ(n2) time. In Proceedings
of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing,
STOC ’96, page 47–55, New York, NY,
USA, 1996. Association for Computing
Machinery. ISBN 0897917855. doi:
10.1145/237814.237827. URL https:

//doi.org/10.1145/237814.237827

an exciting area of research, continuing to this day, and have deep
connections to problems in mathematics 3.

3 e.g., to the construction of Ramanujan
expanders and the resolution of the
Kadison-Singer problem in quantum
information, among others.

Adam Marcus, Daniel Spielman, and
Nikhil Srivastava. Interlacing families
i: Bipartite Ramanujan graphs of all
degrees. Annals of Mathematics, pages
307–325, July 2015. doi: 10.4007/an-
nals.2015.182.1.7

Improved Karger-Stein Algorithm

Karger and Stein 4 improve the algorithm to run in time O(n2 log2(n))

4 David R. Karger and Clifford Stein.
A new approach to the minimum cut
problem. J. ACM, 43(4):601–640,
jul 1996. ISSN 0004-5411. doi:
10.1145/234533.234534. URL https:

//doi.org/10.1145/234533.234534

(essentially replacing two factors of n with log(n) instead). The idea
is roughly that repetition ensures fault tolerance. The real-life advice of
making two backups of your hard drive is related to this: the prob-
ability that both fail is much smaller than one does. In the case of
Karger’s algorithm, the overall probability of success is too low.

https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/234533.234534
https://doi.org/10.1145/234533.234534

5

The main idea is this: we’re unlikely to kill the min-cut in the
first several contractions, so why are we repeating these every time?
Instead, we should be more clever about exactly which contractions
we repeat. In other words, the chance of a min-cut being killed
in a contraction is higher if the number of vertices in the graph
is lower. We will now set up a recursive algorithm that ends up
doing repetitions in a way that effectively amounts to doing more
repetitions for graphs on a smaller number of vertices.

The formalization of this idea begins with the following obser-
vation about the analysis of the telescoping product in the proof of
Theorem 1.

Observation 2. Let G be an undirected graph with n nodes, possibly with
multi-edges but not self-loops. Let (X, X̄) be any minimum cut of G, then
the probability that (X, X̄) survives n − n/

√
2 random contractions is at

least 1/2.

Proof. Precisely the same math as the proof of Theorem 1, except stop
at n − n/

√
2 instead of n − 2. This telescopes to at least 1/2.

A recursive algorithm: Now, consider the following recursive
algorithm: starting from a graph G (with n nodes, multi-edges but no
self-loops), twice, and independently, randomly contract edges until
only n/

√
2 nodes remain, and call the resulting graphs G′

1, G′
2. Then,

call the algorithm independently on each of G′
1, G′

2, and output the
smaller two returned cuts.

The runtime of the algorithm satisfies the recurrence:

T(n) = O(n2) + 2T(n/
√

2).

T(n) = O(n2 log n) solves the recurrence.5 So, each independent 5 Hush, hush, dont tell anybody, but
most researchers dont use the Master
theorem, even though it was stressed
a lot in undergrad algorithms. Most
researchers just “unfold" the recursion.
More formally, you could instead write
a binary tree, observing that there are
O(log n) levels and that each level has
total “excess” work of O(n2). On level
i, there are 2i nodes, each with “excess
work” O((n/

√
2

i
)2) = O(n2/2i).

run of Karger-Stein has a total runtime barely more than Karger’s
algorithm, but the redundancy should guarantee a higher success
probability. Again, we need to analyze the probability that the min-
cut will survive the Karger-Stein algorithm.

Theorem 2 (Karger-Stein 1996). Let c be the value of the minimum cut
of G. Then the probability that Karger-Stein outputs a cut of value c is
Ω(1/ log n).

Proof. This time, we can’t restrict attention to a specific min-cut
(X, X̄) because even if that min-cut survives one of the two recur-
rences, the other recurrence might output a different minimum cut
(and only one can be selected in the end).

So, define P(n) as the probability that an iteration of Karger-Stein
selects a minimum cut in graphs of size n. We see that Karger-Stein
selects a minimum cut if and only if for one of the two recurrences:

6

• A min-cut survives the first n − n/
√

2 contractions (this occurs with
probability at least 1/2, by Observation).

• The recursive call succeeds. This happens with probability at least
P(n/

√
2), by definition.

So the probability of success for each try is at least P(n/
√

2)/2.
The probability that both fail is then at most (1 − P(n/

√
2)/2)2, and

we get P(n) ≥ 1 − (1 − P(n/
√

2)/2)2. The last step is again solving
the recurrence, which is Ω(1/ log n).

To see this, assume that P(n/
√

2) ≥ ∆/ log n for some constant
∆ > 0. Then we get:

P(n) ≥ 1− (1− ∆
2 log(n/

√
2)

)2 = 1− (1− ∆
2 log(n)− 1

)2 ≥ ∆
log(n)− 1/2

− (
∆

2 log(n)− 1
)2

≥ ∆
log(n)

+
∆/2

log(n)(log(n)− 1/2)
− ∆2

(2 log(n)− 1)2 ≥ c
log n

+
2∆ log(n)− ∆ − ∆2 log n
log(n) · (2 log(n)− 1)2 ≥ ∆/ log n.

The last inequality is true whenever ∆ ≤ 2. So we get that the
probability of success is Ω(1/ log(n)).

We can repeat the entire algorithm independently O(log(n)/ϵ)

times to get a total success rate of 1 − ϵ as before.

Bibliography

András A. Benczúr and David R. Karger. Approximating s-t
minimum cuts in Õ(n2) time. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing, STOC ’96, page
47–55, New York, NY, USA, 1996. Association for Computing Ma-
chinery. ISBN 0897917855. doi: 10.1145/237814.237827. URL
https://doi.org/10.1145/237814.237827.

David R. Karger. Global min-cuts in rnc, and other ramifications
of a simple min-cut algorithm. In Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, page 21–30,
USA, 1993. Society for Industrial and Applied Mathematics. ISBN
0898713137.

David R. Karger and Clifford Stein. A new approach to the minimum
cut problem. J. ACM, 43(4):601–640, jul 1996. ISSN 0004-5411. doi:
10.1145/234533.234534. URL https://doi.org/10.1145/234533.

234534.

Adam Marcus, Daniel Spielman, and Nikhil Srivastava. Interlacing
families i: Bipartite Ramanujan graphs of all degrees. Annals of Mathe-
matics, pages 307–325, July 2015. doi: 10.4007/annals.2015.182.1.7.

https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/234533.234534
https://doi.org/10.1145/234533.234534

	Randomized Minimum Cut
	Basic Operations
	The (Core) Algorithm
	Analysis
	Improved Karger-Stein Algorithm

	Bibliography

