
princeton university fall ’24 cos 521:Advanced Algorithms

Homework 2

Out: Oct 11 Due: Oct 27

Instructions:

• Upload your solutions (to the non-extra-credit) as a single PDF file (one PDF total)
to Gradescope. Please anonymize your submission (do not list your name in the PDF
title or in the document itself). If you forget, it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
PDF file to Gradescope. Please again anonymize your submission.

• You may discuss ideas for solutions with any classmates, textbooks, the Internet, etc.
Please attach a brief “collaboration statement” listing any collaborators at the end of
your PDF. You must write up your solutions individually.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

• Each problem is worth twenty points (even those with multiple subparts).

Problems:

§1 Recall the max-flow problem from undergraduate algorithms: for a directed graph
G(V,E) with non-negative capacities ce for every e ∈ E and two special vertices s
(source, with no incoming edges) and t (sink, with no outgoing edges), a flow in G is
an assignment f : E → R≥0 such that f(e) ≤ ce for every edge and for every vertex
v ∈ V \ {s, t}, the total incoming flow

∑
(u,v)∈E f((u, v)) equals the total outgoing

flow
∑

(v,w)∈E f((v, w)). The task is to find a maximum flow f i.e., a flow f such that∑
(s,u)∈E f((s, u)) is maximized.

(a) Show that the following LP is a valid formulation for computing the value of the
maximum flow in G. There is a variable f((u, v)) for all (u, v) ∈ E.

max
∑
u

f((u, t))

∀e = (u, v) ∈ E, f((u, v)) ≤ ce
∀v /∈ {s, t},

∑
(u,v)∈E

f((u, v)) =
∑

(v,w)∈E

f((v, w))

∀e ∈ E, f(e) ≥ 0 (1)
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(b) Write the dual for the LP (1). Show that this dual LP computes the minimum
fractional s-t cut in G. A fractional cut places each node v at some point yv on
the unit interval [0, 1], with s placed at 0 and t placed at 1. The value of the
fractional cut is

∑
(u,v)∈E(G) ce ·max{0, yv − yu} (where ce is the weight of edge

e). Observe that if instead each yv ∈ {0, 1}, that this is simply an s-t cut. Use
strong LP duality to conclude the fractional max-flow min-cut theorem. That is,
if the max-flow is C, there exists a fractional s-t cut of value C, and no fractional
s-t cut of value < C.

(c) Devise a rounding scheme that takes as input a fractional min-cut of value C
and outputs a true (deterministic) min-cut of value C. (Hint: try correlated
randomized rounding — choose a threshold c ∈ [0, 1] uniformly at random and
set S = {v | yv ≤ c}. What can you say about the probability that a given edge
is in this (randomized) cut?) Conclude the max-flow min-cut theorem.

§2 The maximum cut problem asks us to cluster the nodes of a graph G = (V,E) into
two disjoint sets X,Y so as to maximize the number of edges between these sets:

max
X,Y

∑
(i,j)∈E

1[(i ∈ X, j ∈ Y ) ∨ (i ∈ Y, j ∈ X)]

Consider instead clustering the nodes into three disjoint sets X,Y, Z. Our goal is to
maximize the number of edges between different sets:

max
X,Y,Z

∑
(i,j)∈E

1[(i ∈ X, j ∈ Y ∪ Z) ∨ (i ∈ Y, j ∈ X ∪ Z) ∨ (i ∈ Z, j ∈ X ∪ Y )]

Design an algorithm based on SDP relaxation that solves this problem with approxi-
mation ration greater then .7.

Note: In the Goemans-Williamson algorithm for maximum cut, we claimed that
2θ

π(1−cos θ) ≥ 0.878, ∀θ ∈ [0, π]. This is much easier to verify analytically (e.g. with a

plot in MATLAB) than to prove formally. If similar quantities appear in your proof,
feel free to bound them analytically, without proof.

Obtain the highest object value you can – partial credit will be given to any non-trivial
solution, even if it obtains a weaker bound than .7.

§3 The Ellipsoid algorithm we saw in the lecture solves convex programs assuming a
separation oracle. Here, we want to show the opposite. To be more specific, consider
the following two tasks regarding a convex body K:

• OPTIMIZE(K): given a vector c ∈ Rn, output arg maxx∈K c
>x;

• SEPARATE(K): given a point x ∈ Rn, output either x ∈ K, or a separating
hyperplane.

We are going to show that if for a specific convex body K, there is a polynomial
time algorithm for OPTIMIZE(K), then there is a polynomial time algorithm for
SEPARATE(K).
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(a) Suppose for a given x, we can solve the following LP with infinitely many con-
straints (finding the optimal w and T ). Show that we can use such an algorithm
to solve SEPARATE(K).

Variables: w ∈ Rn, T ∈ R
Maximize: w>x− T

Subject to: ∀y ∈ K, w>y ≤ T
− 1 ≤ T ≤ 1

(b) Design a polynomial time separation oracle for the above LP using OPTIMIZE(K),
and conclude.

§4 Describe separation oracles for the following convex sets. Your oracles should run in
linear time, assuming that the given oracles run in linear time (so you can make a
constant number of black-box calls to the given oracles).

(a) The `1 ball, {x : ‖x‖1 ≤ 1}. Recall that ‖x‖1 =
∑d

i=1 |xd|.
(b) Any convex set A that we have a projection oracle for. I.e. we have an oracle to

compute arg minx∈A ‖x− y‖2 for any y.

(c) The ε-neighborhood, E of any convex set A:

E = {x : ∃y ∈ A with ‖x− y‖2 ≤ ε},

given a projection oracle for A.

§5 In class we designed a 3/4-approximation for MAX-2SAT using LP rounding. The
MAX-SAT problem is similar except for the fact that the clauses can contain any
number of literals. Formally, the input consists of n boolean variables x1, x2, . . . , xn
(each may be either 0 (false) or 1 (true)), m clauses C1, C2, . . . , Cm (each of which
consists of disjunction (an “or”) of some number variables or their negations) and a
non-negative weight wi for each clause. The objective is to find an assignment of 1 or
0 to xis that maximize the total weight of satisfied clauses. As we saw in the class, a
clause is satisfied if one of its non-negated variable is set to 1, or one of the negated
variable is set to 0. You can assume that no literal is repeated in a clause and at most
one of xi or ¬xi appears in any clause.

(a) Generalize the LP relaxation for MAX-2SAT seen in the class to obtain a LP
relaxation of the MAX-SAT problem.

(b) Use the standard randomized rounding algorithm (the same one we used in class
for MAX-2SAT) on the LP-relaxation you designed in part (1) to give a (1−1/e)
approximation algorithm for MAX-SAT. Recall that clauses can be of any length.
(Hint: there is a clean way to resolve “the math” without excessive calculations).

(c) A naive algorithm for MAX-SAT problem is to set each variable to true with
probability 1/2 (without writing any LP). It is easy to see that this unbiased
randomized algorithm of MAX-SAT achieves 1/2-approximation in expectation.
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Show the algorithm that returns the best of two solutions given by the ran-
domized rounding of the LP and the simple unbiased randomized algorithm is
a 3/4-approximation algorithm of MAX-SAT. (Hint: it may help to realize that
in fact randomly selecting one of these two algorithms to run also gives a 3/4-
approximation in expectation).

(d) Using the previous part (and in particular, the hint) for intuition, design a direct
rounding scheme of your LP relaxation to get a 3/4-approximation (that is,
design a function f(·) which assigns a literal xi to be true independently with
probability f(z) when the corresponding variable zi in your LP relaxation is
equal to z). (Hint: here, it may get messy to fully resolve the calculations. You
will get full credit if you state the correct rounding scheme and clearly state the
necessary inequalities for the proof. You should also attempt to show that the
inequalities hold for your own benefit, but not for full credit).

§6 (extra credit) Consider the following problem: there are n > k independent (but not
identically distributed) non-negative random variables X1, . . . , Xn drawn according
to distributions D1, . . . , Dn. Initially, you know each Di but none of the Xis.

Starting from i = 1, each Xi is revealed one at a time. Immediately after it is revealed,
you must decide whether to “accept i” or “reject i,” before seeing the next Xi+1. You
may accept at most k elements in total (that is, once you’ve accepted k times, you
must reject everything that comes after). Your reward at the end is

∑
i|i was acceptedXi.

(a) For general k, design a policy that guarantees expected reward at least (1 −
O(

√
ln(k)
k )) ·EX1,...,Xn←D1,...,Dn [

∑k
j=1Xr(j)], where r is a permutation from [n] to

[n] satisfying Xr(1) ≥ Xr(2) ≥ . . . ≥ Xr(n) (i.e. the policy gets expected reward

at least (1 − O(

√
ln(k)
k )) times the expected sum of top k weights, which is the

best you could do even if you knew all the weights up front).1

Hint: Try to set up a simple policy that can be analyzed using a Chernoff bound.

(b) Come up with an example showing that it is not possible to improve the above
guarantee beyond (1− Ω(1/

√
k)) (which is optimal - no need to prove this).

Hint: an example exists whose complete proof should fit in half a page. You may
use without proof the fact that if X is the number of coin flips which land heads
from k independent fair coin flips, then E[|X − k/2|] = Θ(

√
k).

1For simplicity of exposition, you may assume that each random variable is continuous. You may want
to think about how to adapt your analysis in case the random variables are discrete, but do not need to
write this in your proof for full credit.


