
Software Engineering
(Part 2)

Copyright © 2024 by
Robert M. Dondero, Ph.D.

Princeton University

1

• Requirements
analysis

• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

Objectives

Stages of SW dev

How to order
the stages

Objectives
• We will cover these

software engineering
topics:

2

Objectives

3

Software Engineering lectures:

Part 1 Requirements analysis
Design (general)

Part 2 Design (object-oriented)
Implementation
Debugging

Part 3 Testing
Evaluation

Part 4 Maintenance
Process models

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

4

Design: OO Heuristic 1

• Use inheritance to model “is a”
– Or “is a kind of”

• Use composition to model “has a”

• Examples…

5

Vehicle

Camera

Ship

Carrier

Plane *

Recall:

ReconPlane

Design: OO Heuristic 1

6

Inheritance

Composition

Association

Design: OO Heuristic 1

Vehicle

Car

Which is proper?

Car

Vehicle

Vehicle Car

A B

C
Vehicle inherits from CarCar inherits from Vehicle

A Vehicle object is composed of a Car object

7

Car VehicleD
A Car object is composed of a Vehicle object

Design: OO Heuristic 1

Car

Engine

Which is proper?

Engine

Car

Car Engine

A B

C
Car inherits from EngineEngine inherits from Car

A Car object is composed of an Engine object

8

Engine CarD
An Engine object is composed of a Car object

Barbara Liskov and Jeannette Wing.
“A behavioral notion of subtyping,”
ACM Transactions on Programming Languages and Systems,
Volume 16, Issue 6 (November 1994), pp. 1811 - 1841.

Design: OO Heuristic 2

• When designing inheritance hierarchies…

• Use the Liskov substitution principle
– Let p(t) be a property provable about objects

t of type T. Then p(s) should be true for
objects s of type S where S is a subtype of T

9

Design: OO Heuristic 2

• Use the Liskov sub principle (cont.)

10

Car

Vehicle

Suppose we have some code that uses a
Car object
Can we can replace the Car object with a
Vehicle object (of any kind) and expect the
code to work? No!

Vehicle

Car

Suppose we have some code that uses a
Vehicle object (of some kind)
Can we can replace the Vehicle object with
a Car object and expect the code to work?
Yes!

Design: OO Heuristic 2

• Use the Liskov sub principle (cont.)

11

Stack

Vector

Suppose we have some code that uses a
Stack object
Can we can replace the Stack object with a
Vector object and expect the code to work?
No!

Vector

Stack

Suppose we have some code that uses a
Vector object
Can we can replace the Vector object with
a Stack object and expect the code to
work? No!

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

Design: OO Heuristic 3

• Favor composition over inheritance
– Inheritance

• White box reuse
– Composition:

• Black box reuse => safer

12

Design: OO Heuristic 4

• Use OO design patterns…

13

Aside: Architectural Patterns

Christopher
Alexander

14

• Example: Entrance Room

“Arriving in a building, or leaving it, you need a room
to pass through, both inside the building and outside it.
This is the entrance room.”

“At the main entrance to a building, make a light-filled
room which marks the entrance and straddles the boundary
between indoors and outdoors, covering some space
outdoors and some space indoors. The outside part may
be like an old-fashioned porch; the inside like a hall or
sitting room.”

Christopher Alexander et al.
A Pattern Language.
Oxford University Press. New York. 1977.

Aside: Architectural Patterns

15

• Example: Private Terrace on the Street

“The relationship of a house to a street is often confused:
either the house opens entirely to the street and there is
no privacy; or the house turns its back on the street, and
communion with street life is lost.”

“Let the common rooms open onto a wide terrace or a
porch which looks into the street. Raise the terrace slightly
above street level and protect it with a low wall, which you
can see over if you sit near it, but which prevents people
on the street from looking into the common rooms.”

Christopher Alexander et al.
A Pattern Language.
Oxford University Press. New York. 1977.

Aside: Architectural Patterns

16

The Gang of Four

Ralph Johnson
Richard Helm
Erich Gamma
John Vlissides

Design: OO Patterns

17

Creational Patterns
 Abstract factory
 Builder
 Factory method
 Prototype
 Singleton

Structural Patterns
 Adapter
 Bridge
 Composite
 Decorator
 Facade
 Flyweight
 Proxy

Behavioral Patterns
 Chain of responsibility
 Command
 Interpreter
 Iterator
 Mediator
 Memento
 Observer
 State
 Strategy
 Template method
 Visitor

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

Design: OO Patterns

18

• Example: Composite
“Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.”

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

Design: OO Pattern: Composite

19

• Example: Composite (cont.)

“Use the Composite pattern when:

-- you want to represent part-whole hierarchies of objects

-- you want clients to be able to ignore the difference between
compositions of objects and individual objects. Clients will treat
all objects in the composite structure uniformly.”

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

Design: OO Pattern: Composite

20

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

Component
operation()

Leaf
operation()

Composite

Design: OO Pattern: Composite

21

Client

Composite
operation()

for child in children
child.operation()

*

children

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

NavalObj
move()

Ship
move()

Composite

Design: OO Pattern: Composite

22

Simulation

Fleet
move()

for child in children
child.move()

*

children

Plane
move()

*

• Example: Bridge

“Decouple an abstraction from its implementation so that
the two can vary independently.”

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

Design: OO Pattern: Bridge

23

• Example: Bridge (cont.)

“Use the Bridge pattern when:

-- you want to avoid a permanent binding between an
abstraction and its implementation.

-- both the abstractions and their implementations should
be extensible by subclassing. In this case, the Bridge
pattern lets you combine the different abstractions and
implementations and extend them independently.”

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

Design: OO Pattern: Bridge

24

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley. Reading, MA. 1995.

Abstraction
operation()

RefinedAbstraction
operation()

Implementor
operationImp()

ConcreteImplementorA
operationImp()

ConcreteImplementorB
operationImp()

imp

Bridge

Design: OO Pattern: Bridge

imp.operationImp()

25

Design: OO Pattern: Bridge

• The proper design:

26

Shape

Rectangle

Square

ShapeImp
int centerX;
int centerY;

SquareImp
int length;

RectangleImp
int width;

imp

Rectangle()
 imp = new RectangleImp()

Square()
 imp = new SquareImp()

Bridge

Aside: OO Patterns in Other Fields

• User interface design patterns
– See http://ui-patterns.com/
– See http://www.welie.com/patterns/

27

Aside: OO Patterns in Other Fields

• User interface design patterns (cont.)
– Example: Password strength meter

28

“Problem summary: You want to make sure your users' passwords
are sufficiently strong in order to prevent malicious attacks.

Solution: A password’s strength is measured according to
predefined rules and is displayed using a horizontal scale next to
the input field. If the password is weak then only a small portion of
the horizontal bar is highlighted. The greater the strength of the
password the more the horizontal bar is highlighted. The password
strength is also appropriately indicated by coloring the bar in a color
associative with good or bad: Green indicating a strong password
and red indicating a weak password.”

https://ui-patterns.com/patterns/PasswordStrengthMeter

Aside: OO Patterns in Other Fields

• Pedagogical design patterns!!!
– See http://www.pedagogicalpatterns.org/
– See Pedagogical Patterns: Advice For

Educators (Bergin et al, editors)

29

You’ve designed your application. What
should your next step be?

30

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

31

Implementation

• Implementation
– Coding the system yourself is only one

option

32

Implementation

• Option 1: Buy
– (pro) System is already tested and evaluated
– (pro) System support provided by vendor
– (con) System and system support cost

money!!!

33

Implementation

• Option 2: Use open source
– (pro) System (maybe) is already tested and

evaluated
– (pro) System is free
– (con) (Maybe) must support the system

yourself

34

Implementation

• Option 3: Build
– (pro) Complete control
– (con) Complete responsibility!

• Option 3a: Compose new code
– The focus of academic programming

• Option 3b: Reuse existing code
– Use code that you (or someone in your

company) previously composed

35

David Wiley.
“The Reusability Paradox.”
http://cnx.org/content/m11898/latest/

Implementation

• The Reusability Paradox
– Large modules do more work, but can be

used in fewer situations
– Small modules do less work, but can be

used in more situations
• Designing for reuse inherently involves

compromise

36

If you decide to build the system, how should
you do it?

37

Implementation

• Bottom-up design 😕
– Compose one part of the system in detail
– Compose another part of the system in detail
– Repeat until finished

38

Implementation

• Bottom-up design in artistic painting
– Paint part of painting in complete detail
– Paint another part of painting in complete

detail
– Repeat until finished

39

Implementation

• Bottom-up design in artistic painting
(cont.)

40

Unlikely to
produce a
good painting

1 2 3 4
5 6 7 8

https://www.demilked.com/sketch-vs-final-product/

Implementation

• Bottom-up design in programming
– Compose part of program in complete detail
– Compose another part of program in

complete detail
– Repeat until finished

– Unlikely to produce a good program

41

Implementation

• Top-down design 😊
– Compose entire system with minimal detail
– Successively refine until finished

42

Implementation

• Top-down design in artistic painting
– Sketch the entire painting with minimal detail
– Successively refine until finished

43

More likely
to produce
a good
painting

https://www.demilked.com/sketch-vs-final-product/

Implementation

• Top-down design in programming
– Compose main() function in pseudocode with

minimal detail
– Refine each pseudocode statement

• Small job => replace with code
• Large job => replace with a function call

– Repeat until finished
– Yields good modularity

• Each function does a small well-defined job

44

Implementation

• Top-down design in programming (cont.)

45

More likely to produce a good program
Bonus: program is naturally modular

Implementation

• Top-down design in programming in
reality
– Compose main() function in pseudocode
– Refine each pseudocode statement

• Oops! Details reveal design error, so…
– Backtrack to refine existing (pseudo)code,

and proceed
– Repeat in (mostly) breadth-first order until

finished

46

Implementation

• Top-down design in programming in
reality (cont.)

47

Implementation

• Top-down design example
– Asgt 1: regoverviews.py

48

main

get_query get_overviews write_overviews

1

2 34

Implementation

• Top-down design example
– Asgt 1: regoverviews.py

49

def main():
 try:
 query = get_query()
 classes = database.get_overviews(query)
 write_overviews(classes)
 except Exception as ex:
 print(sys.argv[0] + ': ' + str(ex),
 file=sys.stderr)
 sys.exit(1)

Program is modular

You’ve implemented your system in code.
What’s next?

50

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

51

Debugging

• Debugging
– How can I fix the system?

52

Debugging

• Debugging techniques (from COS 217)
– Divide and conquer

53

Debugging

regoverviews.py database.py DB

query
SQL

statement

populated
cursor

list of
classes

54

12

Asgt 1:

Debugging

• Debugging techniques (from COS 217)
– Add more internal tests
– Focus on recent changes
– Display output

55

Debugging

• Debugging techniques (from COS 217)
– Use a debugger

56

Language Debugger Reference

C gdb COS 217

Python pdb Appendix of The Python Language (Part 5)

Java jdb https://docs.oracle.com/javase/7/docs/technote
s/tools/windows/jdb.html

JavaScript Chrome
Firefox
…

https://www.w3schools.com/js/js_debugging.a
sp

JavaScript Node.js https://nodejs.org/api/debugger.html

Debugging

• Debugging techniques (not from COS
217)
– Use an issue tracking system

• Examples: Issues (GitHub), Bugzilla (open
source), Jira (Atlassian), Trello (Atlassian), Trac
(open source), …

• See
https://en.wikipedia.org/wiki/Comparison_of_issu
e-tracking_systems

57

You’re reasonably sure that your code is
bug-free. What’s next?

58

Continued in
Software Engineering (Part 3)…

59

