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• Requirements 
analysis

• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

Objectives

Stages of SW dev

How to order
the stages

Objectives

• We will cover these 
software engineering 
topics:
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Objectives
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Software Engineering lecture slide decks:

Part 1 Requirements analysis
Design (general)

Part 2 Design (object-oriented)
Implementation
Debugging

Part 3 Testing
Evaluation

Part 4 Maintenance
Process models



Software Engineering

• Composing code is a part of what a 
software engineer does

• Let’s consider all of the parts...
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You’ve decided to create a software system.  
What’s your first step?
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Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models
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Requirements Analysis

• Requirements analysis
– Who are the system’s users?
– What should the system do to fulfill the 

users’ needs?
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What kinds of requirements should you 
gather?
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Requirements Analysis: Kinds

• Always:
– Functional requirements

• Sometimes:
– Data requirements
– Environmental requirements
– Usability requirements

9
Yvonne Rogers, Helen Sharp, Jenny Preece. Interaction Design: 
Beyond Human-Computer Interaction (3rd Edition). Wiley, 2011.



How should you go about gathering those 
requirements?
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• Questionnaires
• Interviews
• Focus groups
• Direct observation
• Studying documentation
• Researching similar products

Users visit
the pgmmers

Pgmmers visit
the users

Requirements Analysis: Gathering
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Yvonne Rogers, Helen Sharp, Jenny Preece. Interaction Design: 
Beyond Human-Computer Interaction (3rd Edition). Wiley, 2011.



How should you structure the requirements 
that you’ve gathered?
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Requirements Analysis: Structuring

• Create models of the user’s domain
– A popular set of modeling notations...
– Unified Modeling Language (UML)
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• Unified Modeling
Language (UML)

Requirements Analysis: Structuring
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Grady
Booch

James
Rumbauch

Ivar
Jacobson

“The three amigos”



Requirements Analysis: Structuring

• Create Class Model(s)
– A UML notation
– Describes classes of objects in the user’s 

domain
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Vehicle

Camera

Ship

Carrier

Plane *

Class model example:

ReconPlane

Requirements Analysis: Structuring
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Inheritance

Composition

Association



Requirements Analysis: Structuring

• Create Scenarios
– A story describing a user interaction with the 

(anticipated) system to achieve some goal
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Requirements Analysis: Structuring

• Create Wireframes and Storyboards
– Low-tech
– High-tech
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Requirements Analysis: Structuring

• Create (tentative) database schema
– Tables, fields
– Relationships among tables

• Primary and foreign keys
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Requirements Analysis: Structuring

• Create Prototype(s)
– Low-fidelity
– High-fidelity
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You probably can’t fulfill all of the user’s 
requirements.  And you certainly can’t fulfill all 
of the user’s requirements right away.  How 
should you prioritize the requirements?
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Requirements Analysis: Prioritizing

• The MoSCoW method
– Define each system feature as:

• M: must have
• S: should have
• C: could have
• W: won’t have (this time)
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Requirements Analysis: Conclusion

• In the academic world:
– Student programmers often are given 

requirements
• In the “real” world:

– (Senior) programmers often must know how 
to gather, structure, and prioritize 
requirements
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You’ve determined the kinds of requirements 
that are relevant, gathered them, structured 
them, and prioritized them.  What should you 
do next?
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Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models
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Design

• Design
– How should the system work?
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How should you specify the system’s design?
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Design: Use Cases

• Create use cases
– A use case is an elaboration of a scenario
– A use case is detailed enough to be testable 

by QA engineers
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Design: Models

• Create Specification Class Model(s)
– Conceptual class model (deja vu)

• Models concepts/classes in the user’s domain
– Specification class model

• Models concepts/classes in the program
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What heuristics should you keep in mind 
when designing the system?
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Design: Heuristics

• Use design heuristics
– Some are general
– Some are specific to OO pgmming
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• (Kernighan) Detect errors low; handle 
errors high

• (Dondero) Detect errors low; handle 
errors as low as you can

Brian W. Kernighan and Rob Pike.
The Practice of Programming.
Addison-Wesley. Reading, MA, 1999.

Design: General Heuristic 1
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Design: General Heuristic 1

def get_overviews(query):
   …
   try:
      Use the database.
   except Exception as ex:
      Write error msg to stderr.
      sys.exit(1)
   …
   Return the class overviews.

(A) Asgt 1: database.py
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Design: General Heuristic 1

def get_overviews(query):
   …
   Use the database.
   …
   Return the class overviews.

(B) Asgt 1: database.py
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Design: General Heuristic 2

• Seek strong cohesion within modules
– The components (fields, functions/methods) 

of a module should be related to each other

– Empirically: not significant
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Design: General Heuristic 2

def get_overviews(query):
   …
   Use the database.
   …
   Return the class overviews.

def write_overviews(classes):
   …
   Write the class overviews to stdout.

(A) Asgt 1: database.py
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Design: General Heuristic 2

def get_overviews(query):
   …
   Use the database.
   …
   Return the class overviews

def get_details(classid):
   …
   Use the database.
   …
   Return the class details.

(B) Asgt 1: database.py
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Design: General Heuristic 3

• Seek weak coupling among modules
– Minimize interfaces
– Encapsulate data
– Hide design decisions

– Empirically: significant
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Design: General Heuristic 3

regoverviews.
py

database.py
Hides design decisions
   Which DBMS?
   What table schema?
   …

Asgt 1: 



Design: General Heuristic 3

regoverviews.
py

database.py

Hides design decisions
   Command-line UI?
   Web app UI?
   Desktop/laptop UI?
   …

Asgt 1: 



• Seek weak design-time coupling

Design: General Heuristic 3.1
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Simulator
   run()
   move()

Plane
   getLat()
   getLon()
   getAlt()
   setLat(newLat)
   setLon(newLon)
   setAlt(newAlt)

Strong design-time coupling

Simulator calls many methods in Plane

Design: General Heuristic 3.1
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No!



Simulator
   run()

Plane
   getLat()
   getLon()
   getAlt()
   setLat(newLat)
   setLon(newLon)
   setAlt(newAlt)
   move()

Weak design-time coupling

Simulator calls few methods in Plane

Design: General Heuristic 3.1
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Yes!



Design: General Heuristic 3.1

class Database:
   …
   def connect():
      …
   def get_overviews(query):
      …
   def get_details(classid):
      …
   def disconnect():
      …

(A) Asgt1: database.py
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Design: General Heuristic 3.1

def get_overviews(query):
   Connect to the database.
   Perform the query.
   Disconnect from the database.
   Return the class overviews.

def get_cetails(classid):
   Connect to the database.
   Perform the query.
   Disconnect from the database.
   Return the class details.

(B) Asgt1: database.py
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• Seek weak run-time coupling

Design: General Heuristic 3.2
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Client
   run()
   sort()

Collection
   getItem(index)
   setItem(index,
      newValue)

Strong run-time coupling

Client makes many calls
to Collection methods

Design: General Heuristic 3.2
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No!



Client
   run()

Collection
   getItem(index)
   setItem(index,
      newValue)
   sort()

Weak run-time coupling

Client makes few calls
to Collection methods

Design: General Heuristic 3.2
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Yes!



• Seek weak maintenance-time coupling

Design: General Heuristic 3.3
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MyModule1
   f1()
   f2()

MyModule2
   f3()
  

Strong maintenance-time coupling

Maintenance programmer 
changes MyModule1 and 
MyModule2 together frequently

Design: General Heuristic 3.3
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No!



MyModule1
   f1()
   

MyModule2
   f2()
   f3()
  

Weak maintenance-time coupling

Maintenance programmer 
changes MyModule1 and 
MyModule2 together infrequently

Design: General Heuristic 3.3
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Yes!



Design: General Heuristic 3.3

dboverviews.py
   get_overviews()

(A) Asgt 1:

dbdetails.py
   get_details()

regoverviews.py

regdetails.py



Design: General Heuristic 3.3

database.py
   get_overviews()
   get_details()

(B)  Asgt 1:

regoverviews.py

regdetails.py



Continued in
Software Engineering (Part 2)…
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