
Software Engineering
(Part 1)

Copyright © 2024 by
Robert M. Dondero, Ph.D.

Princeton University

1

• Requirements
analysis

• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

Objectives

Stages of SW dev

How to order
the stages

Objectives

• We will cover these
software engineering
topics:

2

Objectives

3

Software Engineering lecture slide decks:

Part 1 Requirements analysis
Design (general)

Part 2 Design (object-oriented)
Implementation
Debugging

Part 3 Testing
Evaluation

Part 4 Maintenance
Process models

Software Engineering

• Composing code is a part of what a
software engineer does

• Let’s consider all of the parts...

4

You’ve decided to create a software system.
What’s your first step?

5

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

6

Requirements Analysis

• Requirements analysis
– Who are the system’s users?
– What should the system do to fulfill the

users’ needs?

7

What kinds of requirements should you
gather?

8

Requirements Analysis: Kinds

• Always:
– Functional requirements

• Sometimes:
– Data requirements
– Environmental requirements
– Usability requirements

9
Yvonne Rogers, Helen Sharp, Jenny Preece. Interaction Design:
Beyond Human-Computer Interaction (3rd Edition). Wiley, 2011.

How should you go about gathering those
requirements?

10

• Questionnaires
• Interviews
• Focus groups
• Direct observation
• Studying documentation
• Researching similar products

Users visit
the pgmmers

Pgmmers visit
the users

Requirements Analysis: Gathering

11

Yvonne Rogers, Helen Sharp, Jenny Preece. Interaction Design:
Beyond Human-Computer Interaction (3rd Edition). Wiley, 2011.

How should you structure the requirements
that you’ve gathered?

12

Requirements Analysis: Structuring

• Create models of the user’s domain
– A popular set of modeling notations...
– Unified Modeling Language (UML)

13

• Unified Modeling
Language (UML)

Requirements Analysis: Structuring

14

Grady
Booch

James
Rumbauch

Ivar
Jacobson

“The three amigos”

Requirements Analysis: Structuring

• Create Class Model(s)
– A UML notation
– Describes classes of objects in the user’s

domain

15

Vehicle

Camera

Ship

Carrier

Plane *

Class model example:

ReconPlane

Requirements Analysis: Structuring

16

Inheritance

Composition

Association

Requirements Analysis: Structuring

• Create Scenarios
– A story describing a user interaction with the

(anticipated) system to achieve some goal

17

Requirements Analysis: Structuring

• Create Wireframes and Storyboards
– Low-tech
– High-tech

18

Requirements Analysis: Structuring

• Create (tentative) database schema
– Tables, fields
– Relationships among tables

• Primary and foreign keys

19

Requirements Analysis: Structuring

• Create Prototype(s)
– Low-fidelity
– High-fidelity

20

You probably can’t fulfill all of the user’s
requirements. And you certainly can’t fulfill all
of the user’s requirements right away. How
should you prioritize the requirements?

21

Requirements Analysis: Prioritizing

• The MoSCoW method
– Define each system feature as:

• M: must have
• S: should have
• C: could have
• W: won’t have (this time)

22

Requirements Analysis: Conclusion

• In the academic world:
– Student programmers often are given

requirements
• In the “real” world:

– (Senior) programmers often must know how
to gather, structure, and prioritize
requirements

23

You’ve determined the kinds of requirements
that are relevant, gathered them, structured
them, and prioritized them. What should you
do next?

24

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

25

Design

• Design
– How should the system work?

26

How should you specify the system’s design?

27

Design: Use Cases

• Create use cases
– A use case is an elaboration of a scenario
– A use case is detailed enough to be testable

by QA engineers

28

Design: Models

• Create Specification Class Model(s)
– Conceptual class model (deja vu)

• Models concepts/classes in the user’s domain
– Specification class model

• Models concepts/classes in the program

29

What heuristics should you keep in mind
when designing the system?

30

Design: Heuristics

• Use design heuristics
– Some are general
– Some are specific to OO pgmming

31

• (Kernighan) Detect errors low; handle
errors high

• (Dondero) Detect errors low; handle
errors as low as you can

Brian W. Kernighan and Rob Pike.
The Practice of Programming.
Addison-Wesley. Reading, MA, 1999.

Design: General Heuristic 1

32

Design: General Heuristic 1

def get_overviews(query):
 …
 try:
 Use the database.
 except Exception as ex:
 Write error msg to stderr.
 sys.exit(1)
 …
 Return the class overviews.

(A) Asgt 1: database.py

33

Design: General Heuristic 1

def get_overviews(query):
 …
 Use the database.
 …
 Return the class overviews.

(B) Asgt 1: database.py

34

Design: General Heuristic 2

• Seek strong cohesion within modules
– The components (fields, functions/methods)

of a module should be related to each other

– Empirically: not significant

35

Design: General Heuristic 2

def get_overviews(query):
 …
 Use the database.
 …
 Return the class overviews.

def write_overviews(classes):
 …
 Write the class overviews to stdout.

(A) Asgt 1: database.py

36

Design: General Heuristic 2

def get_overviews(query):
 …
 Use the database.
 …
 Return the class overviews

def get_details(classid):
 …
 Use the database.
 …
 Return the class details.

(B) Asgt 1: database.py

37

Design: General Heuristic 3

• Seek weak coupling among modules
– Minimize interfaces
– Encapsulate data
– Hide design decisions

– Empirically: significant

38

Design: General Heuristic 3

regoverviews.
py

database.py
Hides design decisions
 Which DBMS?
 What table schema?
 …

Asgt 1:

Design: General Heuristic 3

regoverviews.
py

database.py

Hides design decisions
 Command-line UI?
 Web app UI?
 Desktop/laptop UI?
 …

Asgt 1:

• Seek weak design-time coupling

Design: General Heuristic 3.1

41

Simulator
 run()
 move()

Plane
 getLat()
 getLon()
 getAlt()
 setLat(newLat)
 setLon(newLon)
 setAlt(newAlt)

Strong design-time coupling

Simulator calls many methods in Plane

Design: General Heuristic 3.1

42

No!

Simulator
 run()

Plane
 getLat()
 getLon()
 getAlt()
 setLat(newLat)
 setLon(newLon)
 setAlt(newAlt)
 move()

Weak design-time coupling

Simulator calls few methods in Plane

Design: General Heuristic 3.1

43

Yes!

Design: General Heuristic 3.1

class Database:
 …
 def connect():
 …
 def get_overviews(query):
 …
 def get_details(classid):
 …
 def disconnect():
 …

(A) Asgt1: database.py

44

Design: General Heuristic 3.1

def get_overviews(query):
 Connect to the database.
 Perform the query.
 Disconnect from the database.
 Return the class overviews.

def get_cetails(classid):
 Connect to the database.
 Perform the query.
 Disconnect from the database.
 Return the class details.

(B) Asgt1: database.py

45

• Seek weak run-time coupling

Design: General Heuristic 3.2

46

Client
 run()
 sort()

Collection
 getItem(index)
 setItem(index,
 newValue)

Strong run-time coupling

Client makes many calls
to Collection methods

Design: General Heuristic 3.2

47

No!

Client
 run()

Collection
 getItem(index)
 setItem(index,
 newValue)
 sort()

Weak run-time coupling

Client makes few calls
to Collection methods

Design: General Heuristic 3.2

48

Yes!

• Seek weak maintenance-time coupling

Design: General Heuristic 3.3

49

MyModule1
 f1()
 f2()

MyModule2
 f3()

Strong maintenance-time coupling

Maintenance programmer
changes MyModule1 and
MyModule2 together frequently

Design: General Heuristic 3.3

50

No!

MyModule1
 f1()

MyModule2
 f2()
 f3()

Weak maintenance-time coupling

Maintenance programmer
changes MyModule1 and
MyModule2 together infrequently

Design: General Heuristic 3.3

51

Yes!

Design: General Heuristic 3.3

dboverviews.py
 get_overviews()

(A) Asgt 1:

dbdetails.py
 get_details()

regoverviews.py

regdetails.py

Design: General Heuristic 3.3

database.py
 get_overviews()
 get_details()

(B) Asgt 1:

regoverviews.py

regdetails.py

Continued in
Software Engineering (Part 2)…

54

