
Concurrent Programming 
(Part 2)

Copyright © 2024 by
Robert M. Dondero, Ph.D.

Princeton University

1



Objectives

• We will cover:
– Concurrent processes vs. concurrent threads
– Race conditions
– Preventing race conditions
– Thread safety

2



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in user
• Preventing race conditions: lock in 

resource
• Thread safety

3



Process vs. Thread Concurrency

• Difference #1
– Process-level concurrency

• Multiple processes run concurrently
• Parent process forks and waits for a child 

process
– Thread-level concurrency

• Multiple threads run concurrently within the 
same process

• Within a process, parent thread spawns (and 
joins) a child thread

4



Process vs. Thread Concurrency

• Terminology review

5

Type of 
Concurrency

Generic Terms Python Terms

Process-level 
concurrency

fork/wait fork/join

Thread-level 
concurrency

spawn/join spawn/join



Process vs. Thread Concurrency

• Difference #2
– Process-level concurrency

• Forking & context switching are relatively slow
– Thread-level concurrency

• Spawning & context switching are relatively fast

6



Process vs. Thread Concurrency

• Difference #3
– Process-level concurrency

• Concurrent processes do not share objects
– Thread-level concurrency

• Concurrent threads do share objects

• Elaboration…

7



Process vs. Thread Concurrency

• Process-level concurrency
– P1 and P2 do not share objects

• P1 and P2 have (initially identical but) distinct 
memory address spaces

8



STACKHEAP

DATA

BSS

STACK HEAP

DATA

BSS

RODATA

TEXT

PROCESS P1 PROCESS P2

IP REG IP REG

Concurrent Processes

Process vs. Thread Concurrency

9



Process vs. Thread Concurrency

• See processsharing.py

10



Process vs. Thread Concurrency

• Thread-level concurrency
– T1 and T2 share objects

• T1 and T2 have distinct STACK sections
• T1 and T2 share the RODATA, DATA, BSS, and 

HEAP sections

11



STACK

HEAP

DATA

BSS

RODATA

TEXT

THREAD 1 THREAD 2

IP REG

Concurrent Threads

STACK

IP REG

Process vs. Thread Concurrency

12



Process vs. Thread Concurrency

• See threadsharing.py

13



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in user
• Preventing race conditions: lock in 

resource
• Thread safety

14



Race Conditions

• Problem:
– Threads can share objects
– Danger if multiple threads update/access the 

same object concurrently
– Race condition

• Outcome depends upon thread scheduling 

15



Race Conditions

• See race.py
$ python race.py
1
2
3
4
5
6
7
8
9
6
4
10
2
0
-2
Final balance: -2
$

$ python race.py
1
2
3
4
-1
5
6
-3
-5
-7
-9
7
8
9
10
Final balance: 10
$

$ python race.py
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$

16



Race Conditions

• Note:
– Use of shared BankAcct object by multiple 

threads causes unpredictable behavior
– race.py contains a race condition

17



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in 

user
• Preventing race conditions: lock in 

resource
• Thread safety

18



Preventing Race Conditions: Lock 
in User

• Observation:
– While a thread is executing deposit() or 
withdraw() on a particular bank_acct 
object…

– No other thread should be able to execute 
deposit() or withdraw() on that 
bank_acct object

19



Preventing Race Conditions: Lock 
in User

• Solution: Locking
– Each object has an associated lock
– All threads that will use object X agree to a 

pact: must acquire lock on X before using X
• Current thread acquires lock on X
• Other threads cannot acquire lock on X until 

current thread releases lock on X
– (Adds lots of overhead)

20



Preventing Race Conditions: Lock 
in User

• Approach 1: Locking in user of shared 
object

21



Preventing Race Conditions: Lock 
in User

• See lockinuser.py (cont.)

22

$ python lockinuser.py
1
2
3
4
2
0
-2
-4
-6
-5
-4
-3
-2
-1
0
Final balance: 0
$ 

$ python lockinuser.py
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$ 



Preventing Race Conditions: Lock 
in User

• See lockinuserw.py

– Uses with statement

23



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in user
• Preventing race conditions: lock in 

resource
• Thread safety

24



Preventing Race Conditions: Lock 
in Resource

• Approach 2: Locking in shared 
resource/object itself

25



Preventing Race Conditions: Lock 
in Resource

• See lockinresource.py (cont.)

26

$ python lockinresource.py
1
2
3
1
-1
-3
-5
-7
-6
-5
-4
-3
-2
-1
0
Final balance: 0
$ 

$ python lockinresource.py
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$ 



Preventing Race Conditions: Lock 
in Resource

• See lockinresourcew.py

– Uses with statement

27



Preventing Race Conditions: Lock 
in Resource

• Which locking approach is better?
– User-level locking: sometimes faster
– Resource-level locking: safer

28



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in user
• Preventing race conditions: lock in 

resource
• Thread safety

29



Thread Safety

• Recall lockinresource.py
– A context switch can occur between any 2 

machine lang instructions
– Implications:

• get_balance() should be protected by locking
• _balance should be private

– But cannot be

30



Thread Safety

• Thread safety
– Oversimplification…
– An object is thread-safe if all of its methods 

are “locked” & all of its fields are private

31



Thread Safety

• Java
– Methods can be locked (synchronized)
– Fields can be private
– Objects can be thread-safe

• Python
– Methods can be locked
– Fields cannot be private
– Any object that has fields cannot be 

thread-safe

32



Summary

• We have covered:
– Concurrent processes vs. concurrent threads
– Race conditions
– Preventing race conditions
– Thread safety

33


