
Concurrent Programming
(Part 1)

Copyright © 2024 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– What a process is
– How to fork and wait for processes
– What a thread is
– How to spawn and join threads

2

Agenda

• Concurrency
• Process-level concurrency
• Thread-level concurrency

3

Concurrency

• To implement concurrency...
• Option 1: Process-level concurrency

– Multiple processes run concurrently
• Option 2: Thread-level concurrency

– Multiple threads run concurrently within the
same process

4

Concurrency

• COS 217
– (Sometimes) covers process-level

concurrency
• As implemented in C via fork() and wait()

– Does not cover thread-level concurrency
• COS 333

– Covers processes-level concurrency
• As implemented in Python

– Covers thread-level concurrency

5

Agenda

• Concurrency
• Process-level concurrency
• Thread-level concurrency

6

Process Concurrency

• Program
– Executable code

• Process
– An instance of a program in execution
– Each process has its own distinct context

7

Process Concurrency

• Context consists of:
– Process id
– Address space: TEXT, RODATA, DATA, BSS,

HEAP, STACK
– Processor state: general purpose registers,

flags register, instruction pointer register, etc.

8

Process Concurrency

• Process-level concurrency
– Process P1 forks child process P2
– P1 and P2 run concurrently

• >1 processor available on computer =>
P1 and P2 run in parallel

• 1 processor available on computer =>
OS context switches between P1 and P2
– OS “gives the processor” to P1
– OS “gives the processor” to P2
– …

9

Process Concurrency

• Example:
• On a Linux system…

– Upon login, process running the ssh
program forks a child process running the
bash program

– Process running the ssh program and
process running the bash program run
concurrently

10

Process Concurrency

• Example:
• On a Linux system…

– Upon issuing a ls command at the bash
prompt, process running the bash program
forks a child process running the ls program

– Process running the ssh program, process
running the bash program, and process
running the ls program run concurrently

11

Process Concurrency

• See forking.py

12

$ python forking.py
parent process terminated
blue
blue
blue
blue
blue
blue process terminated
red
red
red
red
red
red process terminated
$

$ python forking.py
parent process terminated
red
red
red
red
red
red process terminated
blue
blue
blue
blue
blue
blue process terminated
$

$ python forking.py
blue
parent process terminated
blue
blue
blue
blue
blue process terminated
red
red
red
red
red
red process terminated
$

Process Concurrency
• Fact:

– A parent process should wait for its child processes
to exit; in other words…

– A parent process should reap its child processes that
have exited

• Definition:
– A zombie process is a process that has exited but

has not been waited for (reaped) by its parent
process

• Zombie processes needlessly clutter the
operating system’s data structures

13

Process Concurrency

• Problem:
– forking.py creates zombie child processes

• Solution:
– Define parent process to wait for (reap) its

child processes…

14

Process Concurrency

• See waiting.py

15

$ python waiting.py
blue
blue
blue
blue
blue
blue process terminated
red
red
red
red
red
red process terminated
parent process terminated
$

$ python waiting.py
red
red
red
red
red
red process terminated
blue
blue
blue
blue
blue
blue process terminated
parent process terminated
$

Agenda

• Concurrency
• Process-level concurrency
• Thread-level concurrency

16

Thread Concurrency

• Thread
– A flow of control within a process
– A process contains one or more threads
– Within a process, all threads execute

concurrently

17

Thread Concurrency

• Thread-level concurrency
– Within P1, thread T1 spawns child thread T2
– T1 and T2 run concurrently

• >1 processors available on computer =>
T1 and T2 run in parallel *

• 1 processor available on computer =>
OS context switches between T1 and T2

– (Relatively) inexpensive context switching

* In principle, but not in Python

18

Thread Concurrency

• Example…
• In a web browser

– When you request a page…
– Browser spawns a child thread
– Child thread performs networking
– Parent thread remains responsive to user

input
– Parent thread and child thread run

concurrently

19

Thread Concurrency

• Example…
• In Java

– At interpreter startup…
– Interpreter spawns main thread and garbage

collector (GC) thread
– Main thread runs user code
– GC thread reclaims garbage created by main

thread (and other threads)
– Main thread and GC thread run

concurrently

20

Thread Concurrency

• Generalizing…
• The “main” thread runs at process startup

– Other threads may run at process startup too
• The main thread can spawn other threads
• Note terminology:

– One process forks another
– One thread spawns another

21

Thread Concurrency

• See spawning.py

22

$ python spawning.py
blue
blue
blue
blue
blue
blue thread terminated
red
red
red
red
red
red thread terminated
main thread terminated
$

$ python spawning.py
blue
blue
blue
blue
red
red
red
red
red
red thread terminated
blue
main thread terminated
blue thread terminated
$

Thread Concurrency

• To compose a thread:
– Define a subclass of threading.Thread

• Override run() method
– Instantiate an object of that class

• To spawn a thread:
– Call object’s start() method

• start() does setup, calls run()
– Don’t call run() directly!!!

23

Thread Concurrency

• Main thread can join a child thread
– Main thread can block until child thread

terminates
• Note terminology

– A parent process can fork and then wait for
a child process

– A parent thread can spawn and then join a
child thread

24

Thread Concurrency

• See joining.py

25

$ python joining.py
blue
blue
blue
blue
blue
blue thread terminated
red
red
red
red
red
red thread terminated
main thread terminated
$

$ python joining.py
blue
blue
blue
red
red
red
red
red
red thread terminated
blue
blue
blue thread terminated
main thread terminated
$

Summary

• We have covered:
– What a process is
– How to fork and wait for processes
– What a thread is
– How to spawn and join threads

26

