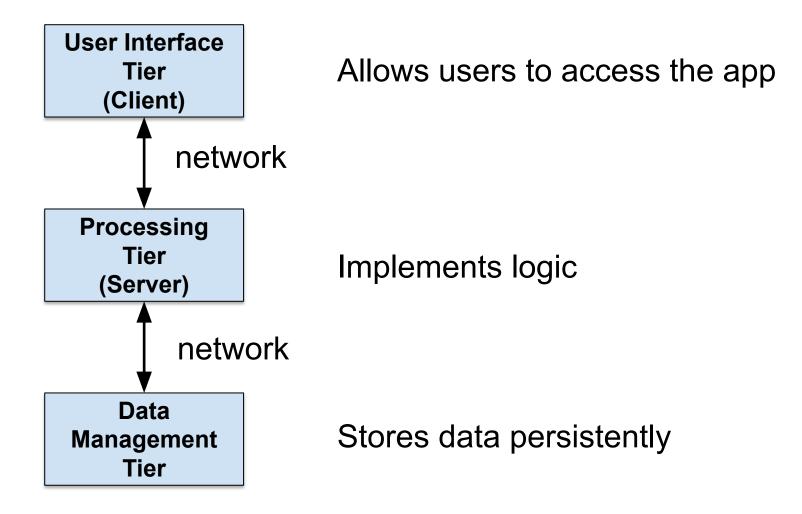
The COS 333 Project

Copyright © 2024 by Robert M. Dondero, Ph.D. Princeton University


Agenda

- Overview
- · Process
- · Deliverables

Overview

- A simulation of reality
- In teams of 3-5 people...
- Build a substantial networked three tier application

Overview

Overview

- Working with instructors
 - First-level adviser: your TA
 - Will monitor & help
 - Will not manage
 - Second-level adviser: the lead instructor
 - Will monitor & help, directly or through your TA
 - Will not manage

Agenda

- · Overview
- · Process
- · Deliverables

Process

- This is **not** a process:
 - Chat about the app for an hour or so
 - Hack some code together
 - Test it a bit
 - Do some debugging
 - Fix the obvious bugs
 - Repeat until the semester ends

Process

- Formal software engineering process models
 - Waterfall, agile, extreme,...
- Recommended informal 7-step process...

Process: Get Started

- Step 1: Get started
 - Find a topic
 - Check out *Previous Projects* web page
 - Check out Project Ideas web page
 - Look both inward and outward
 - Think both big and small

Process: Get Started

- Step 1: Get started
 - Form a team
 - Use ProjectFinder app (required)
 - Use Ed (optional)

Process: Get Started

- Step 1: Get started
 - Choose a leader
 - Goal: conceptual integrity (Brooks)

Process: Define Requirements

- Step 2: Define requirements
 - Who are the users?
 - Identify them by name
 - What should the app do?
 - Gather requirements
 - Interview users
 - Watch users work
 - Structure requirements
 - Compose scenarios
 - Compose wireframes, storyboards
 - Involve the users!!!

- Step 3: Design
 - How will the app work?

- Step 3: Design
 - Design "both ends toward the middle"
 - Early in the project: design your UI
 - Early in the project: design your DB
 - Rest of the project: connect the two

- Step 3: Design
 - Design module interfaces
 - Module = interface + implementation
 - Interface
 - The **public** part of a module
 - A module's contract with clients
 - Hides design decisions

- Step 3: Design
 - Choose technologies

Course goal	Use default technologies	Use non-default technologies
Learn many technologies	-	+
Learn software engineering	+	_

- Step 3: Design
 - Choose user interface tier technologies

Desktop app	Python**, PyQt5*, Java, Swing,
Web app	HTML**, CSS**, Bootstrap**, JavaScript**, AJAX**, jQuery**, React**,
Native mobile app	Java*, Kotlin, Android*, Objective-C, Swift, iOS, JavaScript**, ReactNative,

** Default technology (covered in lectures & asgts)

* Covered in lectures or lecture appendices or optional lectures

Aside: React

- React is:
 - (pro) Hot!
 - (pro) Good for large projects
 - (con) Overkill for small projects
 - (con) Harder to learn than jQuery

- Step 3: Design
 - Choose processing tier technologies

Language	Python**, Java, JavaScript*,
Framework	For Python: Flask**, Django*, For Java: Spring*, For JavaScript: Express*,
Hosting service	Render**, Heroku*,

- ** Default technology (covered in lectures & asgts)
- * Covered in lectures or lecture appendices or optional lectures

- Step 3: Design
 - Choose data management tier technologies

Data store	Relational DBMS: PostgreSQL**, MySQL, NoSQL DBMS: Redis, MongoDB, Another app API Don't use SQLite!
Hosting	For PostgreSQL: Render**, Heroku*
service	For MongoDB: Atlas

** Default technology (covered in lectures & asgts)

* Covered in lectures or lecture appendices or optional lectures

- Step 3: Design
 - Suggestions for choosing technologies:
 - Talk with course instructors
 - Do many simple tech experiments early

Process: Implement

- Step 4: Implement
 - Compose module implementations
 - Rule 1: You need not compose all of the code, but the overall product must be your work
 - Rule 2: Every team member must compose a substantial amount of code

Process: Test

- Step 5: Test
 - Does the app work as **you** intend?
 - Integrated with Implementation step
 - Additional distinct step at the end

Process: Evaluate

- Step 6: Evaluate
 - Does the app work as its **users** intend?
 - Does the app fulfill the users' needs?

Process: Document

- Step 7: Document
 - Integrated with previous steps
 - Additional distinct step at the end
 - Grader's Guide document
 - Product Eval document
 - Project Eval document

- Iterate
 - Iterate between Implement and Test frequently
 - Revisit Define Requirements and Design less frequently

- · Do least-risk design
 - Minimize risk
 - The module to develop next should be the one with maximal risk
 - The module to develop next should be the one which, if problematic, will have the largest negative impact on the app as a whole

- Use a version control system for all code
 - Git is mandatory
 - GitHub is mandatory

- Allocate time for "overhead" activities
 - Changing your mind
 - Disaster
 - Sickness
 - Health!
 - Deliverables...

Agenda

- · Overview
- · Process
- Deliverables

- · Deliverables
 - See Project web page for details
 - See Schedule web page for due dates
 - All deliverables are graded

When	Deliverable
Pre-project	ProjectFinder entry
Pre-project	Project pre-approval meetings (optional)
Pre-project	Project Approval Meeting
Early project	Team Directory
Early project	Project Overview document

When	Deliverable
Mid-project	Weekly status meetings
Mid-project	Timeline document
Mid-project	Wireframes
Mid-project	Demo of <i>Prototype</i>
Mid-project	Demo of <i>Alpha version</i>
Mid-project	Demo of <i>Beta version</i>

When	Deliverable
Reading Period	Presentation
Dean's Date	Grader's Guide doc
Dean's Date	Product Eval doc
Dean's Date	Project Eval doc
Dean's Date	The application

Keys to Success

- Keys to success in COS 333:
 - Find a good project
 - Find good teammates