
Database Programming
(Part 1)

Copyright © 2024 by
Robert M. Dondero, Ph.D.

Princeton University

1



Objectives

• We will cover:
– Databases (DBs) and database 

management systems (DBMSs)…
– With a focus on relational DBs and 

DBMSs…
– With a focus on the SQLite DBMS…
– With a focus on programming with SQLite

2



Agenda

• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

– Fundamentals
– Selecting data
– Selecting data advanced
– Changing data
– Reading & writing

3



Relational DBs and DBMSs

• Database (DB)
– A structured collection of persistent data

• Database management system (DBMS)
– Software that maintains DBs

• Database administrator (DBA)
– A person who administers DBs and DBMSs

4



Relational DBs and DBMSs

• A good DBMS used by good DBAs can:
– Reduce redundancy
– Avoid inconsistencies
– Facilitate data sharing
– Enforce standards
– Apply security restrictions
– Maintain integrity
– Balance conflicting requirements
– Insure safety (backups)

5

An Introduction to Database 
Systems, C. J. Date



Relational DBs and DBMSs

6

Edgar Codd



Relational DBs and DBMSs

7

Formally Informally
Relations Tables
Tuples Rows
Attributes Fields

Relational DB structure:



BOOKS
isbn  title                       quantity
123   The Practice of Programming 500
234   The C Programming Language  800
345   Algorithms in C             650

AUTHORS
isbn author
123  Kernighan
123  Pike
234  Kernighan
234  Ritchie
345  Sedgewick

CUSTOMERS
custid custname  street        zipcode
111    Princeton 114 Nassau St 08540 
222    Harvard   1256 Mass Ave 02138
333    MIT       292 Main St   02142 

ORDERS
isbn custid quantity
123  222    20
345  222    100
123  111    30 

ZIPCODES
zipcode city      state
08540   Princeton NJ
02138   Cambridge MA
02142   Cambridge MA

Relational DBs and DBMSs

8



Agenda
• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

– Fundamentals
– Selecting data
– Selecting data advanced
– Changing data
– Reading & writing

9



SQL and SQLite 

10

Donald
Chamberlin

Raymond
Boyce

SQL



SQL and SQLite 

11

D. Richard Hipp

SQLite



SQL and SQLite

12

DBMS
program

Application
program

Data
store

DBMS is a program

Socket

File I/O

Typical architecture when using a DBMS:



Application
program

SQL and SQLite

13

SQLite
module

Data
store

DBMS is a module

File I/O

Typical architecture when using SQLite:



Agenda
• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

– Fundamentals
– Selecting data
– Selecting data advanced
– Changing data
– Reading & writing

14



SQLite Client

• Question: How does one use SQLite?

• Answer:  In this course:
– Via the SQLite command-line client
– Via programs that you compose

15



SQLite Client

• The sqlite3 program

16

$ sqlite3 bookstore.sqlite
SQLite version 3.45.1 2024-01-30 16:01:20
Enter ".help" for usage hints.
sqlite> 



SQLite Client

17

Standard SQL 
Statements

SQLite
Statements

Do not begin with a 
period

Begin with a period

Contain keywords 
are case insensitive

Contain keywords 
are case sensitive

Must end with a 
semicolon

Need not end with a 
semicolon



Agenda
• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

– Fundamentals
– Selecting data
– Selecting data advanced
– Changing data
– Reading & writing

18



Agenda

• Assumptions
– The bookstore.sqlite file already exists
– The bookstore.sqlite file contains the 

bookstore DB (as previously described)
• Tables named books, authors, orders, customers, 

and zipcodes
– We issued this command:

19

$ sqlite3 bookstore.sqlite
SQLite version 3.45.1 2024-01-30 16:01:20
Enter ".help" for usage hints.
sqlite> 



SQLite Client: Fundamentals

20

.help

sqlite> .help
.dump ?TABLE? ...      Dump the database in an SQL text format
                         If TABLE specified, only dump tables matching
                         LIKE pattern TABLE.
.help                  Show this message
.output ?FILE?         Send output to FILE or stdout
.quit                  Exit this program
.read FILENAME         Execute SQL in FILENAME
.schema ?PATTERN?      Show the CREATE statements matching PATTERN
                          Add --indent for pretty-printing
.tables ?TABLE?        List names of tables
                         If TABLE specified, only list tables matching
                         LIKE pattern TABLE.
…
sqlite> 



SQLite Client: Fundamentals

21

.tables
sqlite> .tables
authors    books      customers  orders     zipcodes 
sqlite> 

.schema [table]

sqlite> .schema
CREATE TABLE books (isbn TEXT, title TEXT, quantity INTEGER);
CREATE TABLE authors (isbn TEXT, author TEXT);
CREATE TABLE customers (custid TEXT, custname TEXT, street TEXT, 
zipcode TEXT);
CREATE TABLE zipcodes (zipcode TEXT, city TEXT, state TEXT);
CREATE TABLE orders (isbn TEXT, custid TEXT, quantity INTEGER);
sqlite> .schema books
CREATE TABLE books (isbn TEXT, title TEXT, quantity INTEGER);
sqlite> 



SQLite
Data Type

Python
Data Type

INTEGER int

REAL float

TEXT str

BLOB bytes

SQLite Client: Fundamentals

22

Python: None
SQLite: NULL



Agenda
• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

– Fundamentals
– Selecting data
– Selecting data advanced
– Changing data
– Reading & writing

23



SELECT expr, … FROM table, … [WHERE condition] 
[ORDER BY column [ASC | DESC]];

SQLite Client: Selecting Data

24Note:  The result is a table

sqlite> SELECT * FROM books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> SELECT isbn, title FROM books;
123|The Practice of Programming
234|The C Programming Language
345|Algorithms in C
sqlite> SELECT * FROM books ORDER BY quantity DESC;
234|The C Programming Language|800
345|Algorithms in C|650
123|The Practice of Programming|500
sqlite> 



SQLite Client: Selecting Data

25

sqlite> SELECT * FROM books WHERE quantity=650;
345|Algorithms in C|650
sqlite> SELECT * FROM books WHERE quantity>=650;
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> SELECT * FROM orders WHERE isbn=123 AND custid=222;
123|222|20
sqlite> SELECT * FROM orders WHERE isbn=123 OR custid=222;
123|222|20
345|222|100
123|111|30
sqlite> 

WHERE clauses:



sqlite> SELECT * from books, authors;
123|The Practice of Programming|500|123|Kernighan
123|The Practice of Programming|500|123|Pike
123|The Practice of Programming|500|234|Kernighan
123|The Practice of Programming|500|234|Ritchie
123|The Practice of Programming|500|345|Sedgewick
234|The C Programming Language|800|123|Kernighan
234|The C Programming Language|800|123|Pike
234|The C Programming Language|800|234|Kernighan
234|The C Programming Language|800|234|Ritchie
234|The C Programming Language|800|345|Sedgewick
345|Algorithms in C|650|123|Kernighan
345|Algorithms in C|650|123|Pike
345|Algorithms in C|650|234|Kernighan
345|Algorithms in C|650|234|Ritchie
345|Algorithms in C|650|345|Sedgewick
sqlite> 

SQLite Client: Selecting Data

26

Joining tables:

Cartesian
product



sqlite> SELECT * from books, authors WHERE 
books.isbn=authors.isbn;
123|The Practice of Programming|500|123|Kernighan
123|The Practice of Programming|500|123|Pike
234|The C Programming Language|800|234|Kernighan
234|The C Programming Language|800|234|Ritchie
345|Algorithms in C|650|345|Sedgewick
sqlite> 

SQLite Client: Selecting Data

27

More reasonable joining of tables:



sqlite> SELECT title, quantity FROM books, 
orders WHERE books.isbn=orders.isbn;
Error: ambiguous column name: quantity
sqlite> SELECT title, orders.quantity FROM 
books, orders WHERE books.isbn=orders.isbn;
The Practice of Programming|20
The Practice of Programming|30
Algorithms in C|100
sqlite>

SQLite Client: Selecting Data

28

Qualifying fields:



sqlite> SELECT custname, title, orders.quantity 
FROM books, customers, orders WHERE 
books.isbn=orders.isbn AND 
orders.custid=customers.custid;
Harvard|The Practice of Programming|20
Harvard|Algorithms in C|100
Princeton|The Practice of Programming|30
sqlite>

SQLite Client: Selecting Data

29

Joining more than 2 tables:



sqlite> SELECT * FROM books, orders WHERE 
books.isbn=orders.isbn;
123|The Practice of Programming|500|123|111|30
123|The Practice of Programming|500|123|222|20
345|Algorithms in C|650|345|222|100
sqlite> 

SQLite Client: Selecting Data Adv

30

Joining tables with “missing rows”:



123|The Practice of Programming|500|123|222|20
123|The Practice of Programming|500|345|222|100
123|The Practice of Programming|500|123|111|30
234|The C Programming Language|800|123|222|20
234|The C Programming Language|800|345|222|100
234|The C Programming Language|800|123|111|30
345|Algorithms in C|650|123|222|20
345|Algorithms in C|650|345|222|100
345|Algorithms in C|650|123|111|30

SQLite Client: Selecting Data Adv

31

No row for the book with isbn 234 is in result table
Beware (Assignment 1):

In reg.sqlite some courses have no professors

Joining tables with “missing rows” (cont.):



Agenda

• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

– Fundamentals
– Selecting data
– Selecting data advanced
– Changing data
– Reading & writing

32



sqlite> SELECT * FROM books WHERE title LIKE 'The%';
123|The Practice of Programming|500
234|The C Programming Language|800
sqlite> SELECT * FROM books WHERE title LIKE '%of%';
123|The Practice of Programming|500
sqlite> SELECT * FROM books WHERE title LIKE 'T_e%';
123|The Practice of Programming|500
234|The C Programming Language|800
sqlite> 

SQLite Client: Selecting Data Adv

33

The LIKE operator and wildcards:

% matches any 0 or more characters
_ matches any 1 character



sqlite> SELECT * FROM authors WHERE author="Pike";
123|Pike
sqlite> SELECT * FROM authors WHERE author="pike";
sqlite> SELECT * FROM books WHERE title LIKE 't_e%';
123|The Practice of Programming|500
234|The C Programming Language|800
sqlite> PRAGMA case_sensitive_like=ON;
sqlite> SELECT * FROM books WHERE title LIKE 't_e%';
sqlite> 

SQLite Client: Selecting Data Adv

34

Case (in)sensitivity:

= is case sensitive
LIKE is case insensitive by default



Aside: Escape Char
C, Java, and Python define backslash as
the escape char

"abc\"def"

Within a string literal, the char following the 
escape char is not a special char

SQL doesn’t define an escape char, but…

The second double quote char doesn’t delimit the 
string, but instead is an ordinary char within the 
string

35



sqlite> SELECT * FROM books WHERE title LIKE 'The%';
123|The Practice of Programming|500
234|The C Programming Language|800
sqlite> SELECT * FROM books WHERE title LIKE 'The\%' ESCAPE '\';
sqlite> 

SQLite Client: Selecting Data Adv

36

The ESCAPE clause for the LIKE operator



CREATE INDEX index ON table (field);

SQLite Client: Selecting Data Adv

37

sqlite> CREATE INDEX books_index ON books (isbn);
sqlite> .schema books
CREATE TABLE books
(isbn TEXT, title TEXT, quantity INTEGER);
CREATE INDEX books_index ON books (isbn);
sqlite> 

Creating indices:



Agenda
• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

– Fundamentals
– Selecting data
– Selecting data advanced
– Changing data
– Reading & writing

38



UPDATE table SET column1=expr1 [, column2=expr2 …] 
[WHERE condition]

SQLite Client: Changing Data

39

sqlite> UPDATE books SET quantity=60 WHERE isbn=123;
sqlite> SELECT * from books;
123|The Practice of Programming|60
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> UPDATE books SET quantity=quantity+1 WHERE isbn=123;
sqlite> SELECT * from books;
123|The Practice of Programming|61
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> UPDATE books SET quantity=500 WHERE isbn=123;
sqlite> SELECT * from books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> 



INSERT INTO table (column, …) VALUES (expr, …);

SQLite Client: Changing Data

40

sqlite> INSERT INTO books (isbn, title, quantity) VALUES 
('456', 'Core Java', 120);
sqlite> SELECT * from books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
456|Core Java|120
sqlite> 



DELETE FROM table [WHERE condition];

SQLite Client: Changing Data

41

sqlite> DELETE FROM books WHERE isbn=456;
sqlite> SELECT * FROM books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> DELETE FROM books;
sqlite> SELECT * FROM books;
sqlite> 



DROP TABLE [IF EXISTS] table

SQLite Client: Changing Data

42

sqlite> DROP TABLE books;
sqlite> .tables
authors    customers  orders     zipcodes 
sqlite> 



CREATE TABLE [IF NOT EXISTS] table
(column datatype, …);

SQLite Client: Changing Data

43

sqlite> CREATE TABLE books (isbn TEXT, title TEXT, 
quantity INTEGER);
sqlite> INSERT INTO books (isbn, title, quantity)
VALUES ('123','The Practice of Programming',500);
sqlite> INSERT INTO books (isbn, title, quantity)
VALUES ('234','The C Programming Language',800);
sqlite> INSERT INTO books (isbn, title, quantity)
VALUES ('345','Algorithms in C',650);
sqlite> SELECT * FROM books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite>



ALTER TABLE table specification [, specification] …; 

SQLite Client: Changing Data

44

sqlite> ALTER TABLE books ADD COLUMN price INTEGER;
sqlite> .schema books
CREATE TABLE books
(isbn TEXT, title TEXT, quantity INTEGER, price INTEGER);
sqlite> SELECT * FROM books;
123|The Practice of Programming|500|
234|The C Programming Language|800|
345|Algorithms in C|650|
sqlite> 



SQLite Client: Changing Data

45

sqlite> ALTER TABLE books DELETE COLUMN price;
Error: near "DELETE": syntax error

sqlite> ALTER TABLE books RENAME TO books2;
sqlite> CREATE TABLE books (isbn TEXT, title TEXT, quantity 
INTEGER);
sqlite> INSERT INTO books (isbn, title, quantity) SELECT isbn, 
title, quantity from books2;
sqlite> DROP TABLE books2;
sqlite> .schema books
CREATE TABLE books
(isbn TEXT, title TEXT, quantity INTEGER);
sqlite> 



.quit

SQLite Client: Changing Data

46

sqlite> .quit
$ 



Agenda
• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

– Fundamentals
– Selecting data
– Selecting data advanced
– Changing data
– Reading & writing

47



SQLite Client: Reading & Writing

48

$ cat bookstore.sql
CREATE TABLE books
(isbn TEXT, title TEXT, quantity INTEGER);

INSERT INTO books (isbn, title, quantity)
   VALUES ('123','The Practice of Programming',500);
INSERT INTO books (isbn, title, quantity)
   VALUES ('234','The C Programming Language',800);
INSERT INTO books (isbn, title, quantity)
   VALUES ('345','Algorithms in C',650);

CREATE TABLE authors (isbn TEXT, author TEXT);
…
$

To read SQL statements from a text file:



SQLite Client: Reading & Writing

49

$ sqlite3 bookstore.sqlite
sqlite> .read bookstore.sql
sqlite> .quit
$

To read SQL statements from a text file  (cont.):



SQLite Client: Reading & Writing

50

$ sqlite3 bookstore.sqlite
sqlite> .output bookstorebackup.sql
sqlite> .dump
sqlite> .quit
$

To write SQL statements to a text file:



SQLite Client: Reading & Writing

51

$ cat bookstorebackup.sql
…
CREATE TABLE books (isbn TEXT, title TEXT, quantity INTEGER);
INSERT INTO books VALUES('123','The Practice of Programming',500);
INSERT INTO books VALUES('234','The C Programming Language',800);
INSERT INTO books VALUES('345','Algorithms in C',650);
CREATE TABLE authors (isbn TEXT, author TEXT);
…
$

Resulting file:



SQLite Client: Reading & Writing

• Question: How does one use SQLite?
• Answer:  In this course:

– Via the SQLite command-line client
– Via programs that you compose…

52



Summary

• We have covered:
– Relational DBs and DBMSs
– SQL and SQLite
– The SQLite command-line client

• See also:
– Appendix 1: Fancy SQL Joins

53



Appendix 1:
Fancy SQL Joins

54



Fancy SQL Joins
Recall:

Cartesian
product

55

sqlite> SELECT * FROM books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> 

sqlite> SELECT * FROM orders;
123|222|20
345|222|100
123|111|30
sqlite> 

sqlite> SELECT * FROM books, orders;
123|The Practice of Programming|500|123|222|20
123|The Practice of Programming|500|345|222|100
123|The Practice of Programming|500|123|111|30
234|The C Programming Language|800|123|222|20
234|The C Programming Language|800|345|222|100
234|The C Programming Language|800|123|111|30
345|Algorithms in C|650|123|222|20
345|Algorithms in C|650|345|222|100
345|Algorithms in C|650|123|111|30
sqlite>



Fancy SQL Joins
Ordinary SQL join

Conceptually, to compute result table:
Compute Cartesian product of books and orders
Retain only those rows in which books.isbn = orders.isbn

56

sqlite> SELECT * FROM books, orders WHERE 
books.isbn=orders.isbn;
123|The Practice of Programming|500|123|111|30
123|The Practice of Programming|500|123|222|20
345|Algorithms in C|650|345|222|100
sqlite> 



Fancy SQL Joins

57

Inner join

Same as ordinary join

Note: No row for book with isbn 234 is present

sqlite> SELECT * FROM books INNER JOIN orders 
ON books.isbn=orders.isbn;
123|The Practice of Programming|500|123|111|30
123|The Practice of Programming|500|123|222|20
345|Algorithms in C|650|345|222|100
sqlite> 



Fancy SQL Joins

58

Conceptually, to compute result table:
Compute inner join
Add each book row that is missing, padded with NULL fields

Left outer join
books orders

sqlite> SELECT * FROM books LEFT OUTER JOIN 
orders ON books.isbn=orders.isbn;
123|The Practice of Programming|500|123|111|30
123|The Practice of Programming|500|123|222|20
234|The C Programming Language|800|||
345|Algorithms in C|650|345|222|100
sqlite> 



SELECT * from books
   RIGHT OUTER JOIN orders
   ON books.isbn = orders.isbn;

Fancy SQL Joins

59

Conceptually, to compute result table:
Compute inner join
Add each orders row that is missing, padded with NULL fields

Not supported by SQLite
But could use left outer join with tables switched!

Right outer join

ordersbooks



SELECT * from books
   FULL OUTER JOIN orders
   ON books.isbn = orders.isbn;

Fancy SQL Joins

60

Conceptually, to compute result table:
Compute inner join
Add each book row that is missing,
padded with NULL fields
Add each orders row that is missing,
padded with NULL fields

Not supported by SQLite

Full outer join

ordersbooks



Fancy SQL Joins

• Note:
– COS 333 assignments do not require outer 

joins
– Your COS 333 project probably will not 

require outer joins
– But understanding outer joins may help you 

to better understand inner joins

61


