
COS 316 Precept:
Concurrency

1

Today’s Plan

• Background on concurrency

• Key Golang mechanisms for developing concurrent
programs (used in assignment 5)

Background: Overview of Concurrency
Sequential programs:

• Single thread of control
• Subprograms / tasks -

don’t overlap in time -
executed one after
another

Concurrent programs
• Multiple threads of control
• Subprograms / tasks - may

(conceptually) overlap in time
- (appear to be) executed at
the same time

● Computer with a single processor can have multiple processes at once
● OS schedules different processes - giving illusion that multiple processes

are running simultaneously
● Note - parallel architectures can have N processes running simultaneously

on N processors

● Let’s give an overview of concurrency in the systems context
● We can start off by talking about a normal, sequential program
● For these, there is a single thread of execution
● The CPU processes these programs one at a time and there is no

concurrency
● For concurrent programs, things are different
● There are multiple threads of control

Background: Operating System (Review)
• Allows many processes to execute concurrently
• Ensures each process’ physical address space does not

overlap
• Ensures all processes get fair share of processor time and

resources
• Processes can run concurrently and (context) switch
• User's perspective: appears that processes run in parallel

although they don't

● Operating systems are responsible for scheduling processes and isolating
them from each other

Background: Context Switch
• Control flow changes from one process to another

• E.g., switching from processA to processB

• Overhead:
• Before each switch OS has to save the state (context) of

currently running process and restore it when next time its
execution gets resumed

Background: Threads vs Processes
• Processes

• Process context switching time is long
(change of virtual address space & other resources)

• Threads
• thread is a “lightweight” process
• thread shares some of the context with other threads in a process, e.g.

• Virtual memory
• File descriptors

• Private context for each thread:
• Stack
• Data registers
• Code (PC)

• Switching between threads is faster because there is less context
– less data that has to be read/written from/to memory

Background: Why Concurrency?
• Performance gain

• Google search queries
• Application throughput

• Throughput = amount of work that a computer can do in a given
time period

• When one task is waiting (blocking) for I/O another task can
continue its execution

• Model real-world structures
• Multiple sensors
• Multiple events
• Multiple activities

Tradeoffs - Concurrent Programming
• Complex
• Error-prone
• Hard to debug

Example

Jesse AlexBank Account

100

time

Read b = 100
b = b + 10
Write b = 110

110

Read b = 110
b = b + 10
Write b = 120

120

Example

Jesse AlexBank Account

100

time

Read b = 100

110

Read b = 100

110

b = b + 10
Write b = 110

b = b + 10
Write b = 110

Go and Concurrency

• Goroutines

• The sync package - https://golang.org/pkg/sync

• sync.Mutex

• sync.Cond

https://golang.org/pkg/sync

Goroutines
• A lightweight thread managed by the Go runtime
• Many goroutines execute within a single OS thread

• One goroutine is created automatically to execute the
main()

• Other goroutines are created using the go keyword
• Order of execution depends on the Go scheduler

• Go takes a process with main thread and schedules
/ switches goroutines within that thread

• Compare
● Sequential Program
● https://play.golang.org/p/PLeCGtRp2QB

● Concurrent program
● https://play.golang.org/p/sDitCEr_3vX

● Go employs what we call green threads and they call goroutines, which means
that instead of using the operating system’s threading infrastructure, it uses its
own form of threads

● Go has its own scheduler for deciding which goroutine should be running at
any given moment

● Separate go routines are created and executed using the go keyword

https://play.golang.org/p/PLeCGtRp2QB
https://play.golang.org/p/sDitCEr_3vX

Goroutines - Exiting
• goroutine exits when code associated with its function

returns
• When the main goroutine is complete, all other goroutines

exit, even if they are not finished
• goroutines are forced to exit when main goroutine exits
• goroutine may not complete its execution because main

completes early
• Execution order of goroutines is non-deterministic

● Goroutines have a separate thread of control from the main thread
● They terminate whenever their code is done being run
● However, even if they haven’t finished running, the termination of the main

thread causes all goroutines to terminate
● In addition, their execution order is non-deterministic.
● This means that there there’s no way to predict when a goroutine will finish

relative to the main goroutine or any other goroutine

A simple example to show non-determinism

• https://play.golang.org/p/sDitCEr_3vX

• Switch the order of the calls from

go say("world") say("hello")
say("hello") go say("world")

• What happens?

• How to fix?

We can use Go’s synchronization tools which we will talk about in the next few slides
to address this non-determinism.
Out-of-scope solution with WaitGroup: https://go.dev/play/p/bPVORhgVDWY

https://play.golang.org/p/sDitCEr_3vX

Synchronization
• Synchronization is when multiple threads agree on a

timing of an event
• Global events whose execution is viewed by all threads,

simultaneously
• One goroutine does not know the timing of other

goroutines
• Synchronization can introduce some global events that

every thread sees at the same time

Synchronization and Go
• type Cond

• Func (*Cond) Signal()
• func (*Cond) Broadcast()
• func (*Cond) Wait()

• type Mutex
• func (m *Mutex) Lock()
• func (m *Mutex) Unlock()

• Channels
• See COS 418

Mutex (Mutual Exclusion)

• Sharing variables between goroutines (concurrently) can
cause problems

• Two goroutines writing to the same shared variable can
interfere with each other

• Function/goroutine is said to be concurrency-safe if can be
executed concurrently with other goroutines without
interfering improperly with them

• e.g., it will not alter variables in other goroutines in some
unexpected/unintended/unsafe way

Sync.Mutex

• A mutex ensures mutual exclusion
• Uses a binary semaphore

• If flag is up → shared variable is in use by somebody
• Only one goroutine can write into variable at a time
• Once goroutine is done with using shared variable it has to put the flag

down
• if flag is down → shared variable is available

• If another goroutine see that flag is down it knows it can use the shared
variable but first it has to put the flag up

A semaphore ~= a signal

Back to our example

funcDeposit(amount) {

 lock balanceLock
 read balance
 balance = balance + amount
 write balance
 unlock balanceLock

}

Jesse AlexBank Account

100

time

Read b = 100

110

Read b =

120

b = b + 10
Write b = 110

 = 110
b = b + 10
Write b = 120

CRITICAL
SECTION}

Sync.Mutex
• Lock()

• Puts the flag up (if none of other goroutines
has already put the flag up)

• If second goroutine also calls Lock()it will be
blocked, it has to wait until first goroutine
releases the lock

• Note - any number of goroutines (not just
two) competing to Lock()

• Unlock()
• Puts the flag down
• When Unlock() is called, a blocked Lock()

can proceed

• In general: put Lock() at the beginning of the
critical section and call Unlock() at the end of it;
ensures that only one goroutine will be in critical
section region

• Create a Mutex
var mut sync.Mutex

• To lock a critical section
mut.Lock()

• To unlock a critical section
mut.Unlock()

Mutex Exercise
Consider:
var i int = 0

var wg sync.WaitGroup

func inc() {

 i = i + 1

 wg.Done()

}

func main() {

 wg.Add(2)

 go inc()

 go inc()

 wg.Wait()

 fmt.Println(i)

}

• Run the program
 https://play.golang.org/p/hNevYkKDp30

• Is it concurrency-safe?

• Use Lock() and Unlock() to make these
programs concurrency-safe

Solution: https://go.dev/play/p/HnJIXA67slb

https://play.golang.org/p/hNevYkKDp30
https://go.dev/play/p/HnJIXA67slb

Mutex Exercise - Bank Account

Jesse AlexBank Account

100

time

Read b = 100

110

Read b =

120

b = b + 10
Write b = 110

 = 110
b = b + 10
Write b = 120

• Make this code concurrency-safe

https://go.dev/play/p/VboCb85otn0

Solution: https://go.dev/play/p/Q12qkDAajCK

https://go.dev/play/p/VboCb85otn0
https://go.dev/play/p/Q12qkDAajCK

Interesting Example
Consider:
var mu sync.Mutex

func funcA() {

 mu.Lock()

 funcB()

 mu.Unlock()

}

func funcB() {

 mu.Lock()

 fmt.Println("Hello, World")

 mu.Unlock()

}

func main() {

 funcA()

}

• Run the program
 https://play.golang.org/p/c2Qgo-W_4mP

• What happens?

This is a deadlock; we have func A holding the lock that func B is waiting for, but func
A calls func B so A can’t terminate before B, hence nothing terminates and both funcs
wait endlessly

https://play.golang.org/p/c2Qgo-W_4mP

Condition Variables - sync.Cond
● sync.Cond type - provides an efficient way to send

notifications among goroutines

● sync.Cond value holds a sync.Locker field with name L
- field value is of type *sync.Mutex or *sync.RWMutex

○ E.g.:
■ cond := sync.NewCond(&sync.Mutex{})
■ cond.L.Lock()
■ cond.L.UnLock()

● sync.Cond value holds a FIFO queue of waiting
goroutines

● commonly used to allow threads to wait on a condition to
be true: consumers wait until a producer signals that
something happened

L Mutex or
RWMutex

24

https://golang.org/pkg/sync/#Cond
https://golang.org/pkg/sync/#Locker

Condition Variables - L.Lock(), L.Unlock(),
Wait(), Broadcast(), Signal()

● cond := sync.NewCond(&sync.Mutex{})

● cond.L.Lock()
● cond.Wait()

● cond.Broadcast()

● cond.Signal()

● Call L.Lock() before
Wait()

● Insert calling goroutine in
queue and block (wait)

● Calls L.Unlock()

Unblock all the goroutines in
(and remove them from) the
waiting goroutine queue

● Blocked routines go back to
running state

● Invokes cond.L.Lock() (in the
resumed cond.Wait() call) to
try to acquire and hold the
lock cond.L again

● cond.Wait() call exits after the
cond.L.Lock() call returns

Unblock the head goroutine in
(and remove them from) the
waiting goroutine queue

25

A Basic Example:

- The two basic operations on condition variables are Wait, and Signal.
- Wait atomically unlocks the mutex and suspends the calling goroutine.
- Signal wakes up a waiting goroutine, which relocks the mutex before

proceeding.
- In our queue, we can use Wait to block on the availability of enqueued items,

and Signal to indicate when another item has been added.

Slide from here:
https://drive.google.com/file/d/1nPdvhB0PutEJzdCq5ms6UI58dp50fcAN/view (also
linked here on go’s sync documentation https://pkg.go.dev/sync#Cond)

https://drive.google.com/file/d/1nPdvhB0PutEJzdCq5ms6UI58dp50fcAN/view
https://pkg.go.dev/sync#Cond

sync.Cond - Always Check the Condition!

● Why is this loop here?

● cond.Wait() does not guarantee
the condition holds when it returns

● The condition could have been made
false again while the goroutine was
waiting to run

● Always check the condition, and keep
waiting if it does not hold

checkCondition := func() bool {
 // Check the condition
}

for !checkCondition() {
 cond.Wait()
}
cond.L.Unlock()

27

