
Consistency
COS 316 Precept #9



Stronger vs Weaker Consistency
Strongly Consistent:

● All nodes in the system see the same 
data at the same time

● Characteristics:
○ Synchronization
○ “Immediate” consistency

Weakly Consistent:

● May take time for all nodes to converge 
to the latest state, or even not finally 
converge

● Characteristics:
○ Asynchronization

● Let’s dive into one of the fundamental concepts in distributed systems: 
consistency models

● Distributed systems offer varying levels of consistency guarantees
● Some distributed systems are strongly consistent

○ The characteristics for strongly consistent distributed system is every 
node is synchronized on the state. Once an entity writes, it will be 
reflected to any other entity.

● Besides strong consistency, there are also other distributed systems which are 
not shooting for high level of consistency guarantee

○ Usually, those systems would take some time for all the nodes to 
converge to the latest state or even not converge.

○ One of the characteristics is about asynchronization. Different nodes 
may see different states/order.

● Usually, there would be tradeoffs between the consistency and the 
performance.



There is no free lunch – CAP theorem

● This is called an impossibility result, which places constraints on the properties 
that a distributed system can have

● The CAP theorem defines three properties of a distributed system
● Strong consistency, which has been discussed extensively in lecture
● Availability, which essentially means that requests are answered by the 

system
● And Partition tolerance, which means that the system continues to 

function even when parts of the system aren’t able to communicate 
with each other over the network

● It goes on to say that any distributed system can only have 2 of these 
properties at a time

● The reason why is relatively intuitive:
● If a system is strongly consistent and always responds to requests, a 

network partition will prevent replicas from communicating with each 
other. If the system then wants to maintain strong consistency, it needs 
to stop responding until replicas can communicate. If instead it wants 
to maintain high availability, then some of those replicas will be allowed 
to diverge, breaking consistency.



Linearizability: “Appears to be a single machine”

Order preserves the real-time ordering between operations

● If operation A completes before operation B begins, then A is ordered before B in 
real-time

● If neither A nor B completes before the other begins, then there is no real-time order
○ (But there must be some total order)

Linearizability is a form of strong consistency.

Example

● ETCD: distributed key-value store. Implemented using RAFT.

- One of the example is ETCD, which is a distributed key-value store. It is 
implemented using RAFT, which is a distributed consensus algorithm



A broken protocol 

1 2

3

4

1. Client sends operation to replica A
2. A executes operation and returns result to client
3. A sends operation to B and C
4. B and C execute operation and send 

acknowledgement to A

A B
3

4

C

● Let’s look at an example of a protocol that’s meant to provide fault tolerance, 
but in the process breaks linearizability

● In this setup, there’s a client that communicates with a system by sending 
operations and receiving the results of those operations

● There is one replica A, that’s in charge of executing all operations. One of the 
other replicas, B and C, takes over if the first replica fails

● When A receives an operation, it replicates it asynchronously



A broken protocol 
1

2

1. Client sends operation to replica B
2. B executes operation and returns result to client
3. B sends operation to C
4. C executes operation and send 

acknowledgement to B

A

B3 4

C

● Now, let’s assume that A has failed. The system fails over to B as the lead 
replica, which is now responsible for communicating with the client

● What if A fails after 2 but before 3?
● This would mean that the client receives the result of an operation that hasn’t 

been replicated yet
● So when the system fails over to replica B, B will have no knowledge of this 

operation
● This is an example of how linearizability is violated
● Let’s look at a non-linearizable history that would be possible because of this



Non-Linearizable History

w(x=1)PA

w(x=2)PB

r(x)=1PC

● This is an example of a non-linearizable execution that this flawed system could 
produce

● In this case, replica A would fail before the write of 2 has been replicated, causing 
none of the other nodes to be aware of that operation



Fixed Protocol

1 4

2

3

1. Client sends operation to replica A
2. A sends operation to B and C
3. B and C execute operation and send 

acknowledgement to A
4. A executes operation and returns result to client

A B
2

3

C

● In this example, replication is synchronous, meaning that it happens before 
the lead replica returns to the client

● Now, there is no way for a client to be observe the completion of an operation 
without the other replicas having observed it as well



Fixed Protocol
1

4

A

B2 3

C

1. Client sends operation to replica B
2. B sends operation to C
3. C executes operation and sends 

acknowledgement to B
4. B executes operation and returns result to client

● This is the same example from earlier, with the fixed protocol



Example:

● Let’s revisit some examples from lecture



Example:



Example:



Causal+ Consistency

1. Writes that are potentially causally related must be seen by everyone in the same order. 
2. Concurrent writes may be seen in a different order by different entities.

a. Concurrent: Writes not causally related

Example:

Node A: write a post (Event 1), then delete that (Event 2)

Node B: write another post (Event 3)

Causality: (Event 1 -> Event 2)

Other nodes may see different order of events, which can be

● Event 1, Event 2, Event 3
● Event 3, Event 1, Event 2
● Event 1, Event 3, Event 2
● But not Event 2, Event 3, Event 1

● Causal+ consistency is weaker than Linearizability.
● Causal+ consistency only guarantees the same order for causally related 

writes.
○ For concurrent writes, different entities may have different order. This 

flexibility allows better performance by reducing coordination overhead.
● For every node, Event 1 should always appear before event 2



Example:

D

● Is this linearizable? No
● But it is causally consistent; the only orderings a causally consistent system has to 

uphold in this case is (w1, r1) and (w2, r2), basically making sure that ‘read x 
happens before write x’. As long as these orders are upheld, a causally consistent 
system can choose to order/observe any individual operations in any way.



Example:

Processes B and C are seeing different orders of the causally related writes (w1 and 
w2; causally related since they’re on the same process), hence this history isn’t 
causally consistent.



Example:

● This is neither linearizable or causally consistent; there’s no way to order the 
causally related operations w5, r5, r5, w6, and r6 without breaking the logical order 
(we can’t read 5 after writing 6 to x). If the r(x)=6 operation was on another 
separate process, then suddenly we will have an ordering that respects all 
necessary happens-before relationships.



Eventual consistency

If update stops, all the nodes finally reach the latest state

Prioritize performance (such as low latency, improved scalability)

Example:

● NoSQL database
● CDN (Content deliverable networks)

● Eventual consistency is weaker than causal+ consistency
● It only guarantees that all the nodes would finally reach the latest state. There 

is no guarantee about the order or timing of convergence.
● Usually, distributed systems leveraging eventual consistency is shooting for 

lower latency and better scalability
○ NoSQL refers to “Not only SQL”. It is a database to store data in 

non-relational format. It can handle large volumes of unstructured or 
semi-structured data. It is known for being performant and highly 
scalable.

○ CDN has to respond to users’ request fast (low latency) by sacrificing 
the guarantee to always provide the latest content.


