
COS 316 Precept #6:
Caching

+
Eviction (Replacement)

Please visit ed discussion to download the
precept 6 exercise code (here)

1

https://edstem.org/us/courses/65541/discussion/5566587

What is caching?

Client Cache Storage/Server

● This week, you’ve learned a bit about web caching in lecture
● Let’s talk about what a cache is and why’d you use one
● As a general computing term, a cache is a place where some objects from a

larger dataset are stored for more convenient access
● You may have encountered a few caches in your computer science education
● There are caches in the CPU memory hierarchy that store a subset of main

memory’s contents
● The TLB, which you learned about earlier, is a cache that stores virtual to

physical address translations
● And the list goes on
● So why would we want to store objects in two places?
● Really there are two reasons:

● Accessing a cache is often faster than accessing the main datastore,
because caches tend to be closer to the entity that’s requesting the
object

● They also result in less traffic to the storage device or server that holds
the entire dataset, which lowers the bandwidth and computing
requirements of the storage server

● Caches generally take advantage of something called locality
● In this context, it refers to the tendency of data accesses to be correlated in

some way
● Temporal locality is a type of locality that describes the tendency of things to

be reused
● For example, if I access a particular object, I’m likely to use it again in the near

● future
● I’ve described this in a very vague and general sense so far. Let’s dive a bit

deeper with an example from lecture

Overview of Web Caching
• Basic idea:

• Bring objects “closer” to clients
• Three primary features:

• Reduce network bandwidth
• Reduce client-perceived delays
• Reduce load on server

• Cache Replacement Strategy
• When a cache becomes full,

which object should be
evicted/replaced?

Clients
(e.g. , browser)

Local Cache Cache Cache Cache Cache

Proxy Cache

Reverse
Proxy Cache

● Web caching is a specific instance of caching where objects are requested
over the web and stored at one or more caches between the client and the
server

● The cache may sit somewhere in the network between the client and the
server

● Or the cache may be on the client itself, meaning the client has decided to
store objects from previous requests

● This is done for several reasons:
● First, it reduces network bandwidth usage

● The network is a shared resource and if less data has to go
over many of its connections, it can reduce congestion

● Second, it reduces delays
● Remember that caches are closer to clients than the servers

are. This means that when a client needs to request an object,
it will receive it faster from a cache

● Third, it reduces load on the server
● Simply put: If requests are handled by a cache, that means they

don’t need to be handled by a server.
● But caches require management
● Caches are necessarily limited in size for various reasons, principal among

them being that storage is expensive
● What happens when we want to insert an object into a cache that’s already

full?
● We have to evict something!

● It turns out that what we choose to evict from a cache is important and there’s
an entire field of research based around this question

Cache Eviction Algorithms
1. Client requests a new object

2. If object in cache

1. return the object

3. Else:

1. Get object from server/provider and return the object to client

2. Attempt to insert the object into the cache:

1. If Cache full:

1. Identify an object in cache to evict

2. Evict the object in the cache

3. Replace with new object (insert new object)

3. Admit the new object to the cache

Cache Eviction Algorithms

• Least recently used (LRU): Evict the object from the cache
whose last request is the oldest

• First-in, First-out (FIFO): Evict the object from the cache that
has been in the cache the longest

• Many others...

● Here are a few important cache eviction algorithms that are commonly used and
taught

● The first is least recently used, or LRU for short.
● LRU caches keep track of the last time an object was accessed.
● When an object needs to be evicted from the cache, it chooses the object whose

most recent access is the furthest in the past
● LRU is a very intuitive algorithm; Just think about your closet.
● If you need to free up space in your closet, are you going to donate the shirt that

you wore yesterday or the one that you can’t even remember wearing?
● This kind of cache exploits temporal locality: Objects that were used recently are

more likely to be used again
● Another algorithm that gets some use is FIFO. With this algorithm, you just evict

the object that has been in the cache for the longest time
● There are many caching algorithms out there, each meant to maximize hit rate,

which is the fraction of object requests that the cache can handle
● A high hit rate means that a cache is able to handle a large fraction of the requests
● A low hit rate means that most of the requests end up being handled by the server

LRU

Cache capacity = 50
Cache size = 45

id: 6
size: 2
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 11
size: 8
request: 11:30
admit: 11:30

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 17
request: 13:30
admit: 13:30

id: 8
size: 10
request: __:__
admit: __:__

Current
time:
16:00

● Here we have an example of the LRU eviction algorithm in action
● This is a cache with capacity 50 units
● Each of the smaller rectangles is an object
● Notice the metadata associated with each object
● They each have an ID (just so we know what object we’re referring to), size, most

recent request time, and admission time
● In this example, the cache currently contains 45 units of objects when an object of

size 10 comes in
● This would push the cache over its capacity, so something has to evicted
● Since this is an example of LRU, we have to look at the object that’s currently in

the cache with the oldest request time
● That is the object with id 11
● So we evict it!
● We then have enough space to place object 8

LRU

Cache capacity = 50
Cache size = 45

id: 6
size: 2
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 11
size: 8
request: 11:30
admit: 11:30

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 17
request: 13:30
admit: 13:30

id: 8
size: 10
request: __:__
admit: __:__

Current
time:
16:00

Cache capacity = 50
Cache size = 45

id: 6
size: 2
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 11
size: 8
request: 11:30
admit: 11:30

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 17
request: 13:30
admit: 13:30

id: 8
size: 10
request: __:__
admit: __:__

Current
time:
16:00

Cache capacity = 50
Cache size = 47

id: 6
size: 2
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 17
request: 13:30
admit: 13:30

id: 8
size: 10
request: 16:00
admit: 16:00

t

● Here we have an example of the LRU eviction algorithm in action
● This is a cache with capacity 50 units
● Each of the smaller rectangles is an object
● Notice the metadata associated with each object
● They each have an ID (just so we know what object we’re referring to), size, most

recent request time, and admission time
● In this example, the cache currently contains 45 units of objects when an object of

size 10 comes in
● This would push the cache over its capacity, so something has to evicted
● Since this is an example of LRU, we have to look at the object that’s currently in

the cache with the oldest request time
● That is the object with id 11
● So we evict it!
● We then have enough space to place object 8

FIFO

Cache capacity = 50
Cache size = 45

id: 6
size: 8
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 11
size: 8
request: 09:11
admit: 11:30

id: 4
size: 5
request: 10:30
admit: 01:33

id: 7
size: 11
request: 13:30
admit: 13:30

id: 8
size: 10
request: __:__
admit: __:__

Current
time:
16:00

id: 11
size: 8
request: 11:30
admit: 11:30

id: 4
size: 5
request: 11:53
admit: 11:33

● Next we have an example of the FIFO eviction algorithm
● Again, we have objects that keep track of all of the same metadata
● Again, an object comes in whose insertion would push the cache over its capacity
● We look for the object with the oldest admit time and evict it!

FIFO

Cache capacity = 50
Cache size = 45

id: 6
size: 8
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 11
size: 8
request: 09:11
admit: 11:30

id: 4
size: 5
request: 10:30
admit: 01:33

id: 7
size: 11
request: 13:30
admit: 13:30

id: 8
size: 10
request: __:__
admit: __:__

Current
time:
16:00

Cache capacity = 50
Cache size = 45

id: 6
size: 8
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 11
size: 8
request: 11:30
admit: 11:30

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 11
request: 13:30
admit: 13:30

id: 8
size: 10
request: __:__
admit: __:__

Current
time:
16:00

Cache capacity = 50
Cache size = 47

id: 8
size: 10
request: 16:00
admit: 16:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 11
request: 13:30
admit: 13:30

id: 11
size: 8
request: 11:30
admit: 11:30

id: 11
size: 8
request: 11:30
admit: 11:30

id: 4
size: 5
request: 11:53
admit: 11:33

● Next we have an example of the FIFO eviction algorithm
● Again, we have objects that keep track of all of the same metadata
● Again, an object comes in whose insertion would push the cache over its capacity
● We look for the object with the oldest admit time and evict it!

Experiments

> Download exercise code from ed

> cd precept6/webcachesim-master

> make

● There’s a web cache simulator on ed that we can use to experiment with
different algorithms and cache sizes

https://edstem.org/us/courses/65541/discussion/5566587

Trace File Form
• Request traces must be given in a

space-separated format with three
columns

• time - long long int
• id - long long int, used to uniquely

identify objects
• size should be a long long int,

object's size in bytes

•Example

time id size

1 1 120

2 2 64

3 1 120

4 3 14

4 1 120

•See test.tr

Using the Simulator*

> ./webcachesim test.tr LRU 1000

LRU:1000 bytes, 10492 reqs, 8495 hits, 81 hits/reqs(%)

> ./webcachesim test.tr FIFO 1000

FIFO:1000 bytes, 10492 reqs, 8206 hits, 78 hits/reqs(%)

* Derived from https://github.com/dasebe/webcachesim

● Now we can see how these eviction algorithms perform by running the above
commands

https://github.com/dasebe/webcachesim

Experiments
• LRU and FIFO
• Vary cache sizes

• 80
• 160
• 320
• 640
• 1280
• 2560
• 5120

• Create a Google Sheet

• Three columns

• SIZE LRU FIFO

• Copy results accordingly

• Select three columns to create

line chart

Experiments

