
COS 316 Precept:
Lecture Review

+
Socket Programming

Outline

● Memory Addressing
● Socket programming

Terminology

● A page
○ Traditionally 4KB
○ Unit of memory that’s managed by the operating system

● A page is the normal unit of memory that’s managed by an operating system

● They’re traditionally 4 kilobytes in size

● While DRAM is able to have much smaller units read from and written to it,
for practical reasons, the operating system will manage things in units of 4KB

● For the sake of simplicity, let’s think of a page as a single unit of memory

3

Memory Addressing

Geometric
● “I want the page stored in row 14, column 5”
Physical
● “I want page 5”
Virtual
● “I want (virtual) page 5”

● So, there are a few ways to address memory

● In Tuesday’s lecture, Wyatt covered geometric, physical, and virtual addressing

● For geometric addressing, reading from a page may look like the following: “I
want the page stored in row 14, column 5”

● For physical addressing, reading from a page is simpler: “I want page 5”

● And finally, virtual addressing looks like the following to applications: “I want
page 5”

● Importantly, each of the addressing methods builds an abstraction on top of
the previous one

● That is, physical builds an abstraction on top of geometric, and virtual builds
an abstraction on top of physical

● Note that while physical and virtual addressing LOOK identical, there’s a large
and important difference that will be explained later

4

Why do we need abstractions?

● They make things simpler!
○ Applications are simpler to write

● They allow for more capabilities
(more on this later)

● So why do we need these abstractions?

● The first reason is that they simplify things!

● The second reason is that they allow for more capabilities, which we’ll discuss
later

● For now, let’s focus on the first reason

● Let’s look at geometric addressing. An application that wants to access a
memory location would need to know the geometry of the memory itself.

● For instance, an access may look something like the following:

● “There are 128 rows and 256 columns on this DIMM, which means that the
page I want to access is on row 5 and column 50”

● This is complex and also tied to the geometry of a particular DIMM

● If I switch out one DIMM for another, the number of rows and columns may
change

5

Application A

Write to page 0

Physical Addressing

● So we introduce physical addressing

● Instead of specifying some memory location based on the DIMM’s geometry,
applications can use a linear address to refer to a memory location

● Hardware attached to the memory will then translate that linear address into
a geometric address

● That’s much simpler and doesn’t require the application to know anything
about the DIMM’s geometry

● This is great so far!

6

Application A Application B

Write to page 0

Read from page 0

Physical Addressing

● But what if you want to run TWO applications?

● We generally don’t want applications to be able to access each other’s data

● You don’t want some sketchy game that you pirated to have access to the
memory that your banking app is using

7

Application A Application B

Write to page 0

Read from page 0

● So physical memory addressing can be a problem

● If application A wants to write to page 0, and application B wants to read from
page 0, then they’ll be referring to the SAME location!

● This can result in all kinds of weirdness

● In addition, it can make writing applications more difficult

● Things become much more complex when an application not only has to keep
track of its own memory usage, but also the memory usage of the other
applications on the system!

● If applications are going to share a single resource, aka multiplex, there needs
to be some way for that sharing to be made easy

8

Virtual Addressing

● So we introduce virtual addressing

● Virtual addressing allows multiple applications to use physical memory
without interfering with each other

● This scheme accomplishes this by adding an additional level of abstraction

● Now, instead of each application having direct access to physical memory, the
operating system keeps a mapping of virtual pages to physical pages for each
application!

● Importantly, it will not map virtual pages for two applications to the same
physical page!

● When an application attempts to access a memory location, the system will
step in and perform the translation from virtual page to physical page on the
fly

● The application never knows a thing!

● This provides several benefits:

● Since the system sits between the application and the memory it’s accessing,
it can do things like make sure application A doesn’t access application B’s
memory

● In addition, it can provide a simpler and easier to work with view of a

9

● machine’s memory to an application

● A system that provides virtual addressing essentially lies to each application
and tells it that it has a large section of contiguous memory all to itself

● It then works to maintain this lie by keeping a mapping of virtual pages to
physical pages and performing the translation between them on the fly
whenever an application accesses memory

● So even if there are a ton of running applications using physical memory, your
application won’t have to worry about it

Virtual Addressing

● The data structure used to hold these virtual to physical address translations is
aptly called a page table

● When an application is running, its page table is loaded into memory and used
by the operating system to perform virtual to physical page translations

● This leads us to a bit of a problem

● While page tables provide a convenient way to write simpler and safer
applications, they affect performance

● Memory accesses take time, they are not instantaneous

● Formerly, when an application wanted to access memory, it would have to
wait for a single memory access to complete

● But now, the operating system needs to perform the virtual to physical page
translation whenever an application wants to access memory.

● For a small page table, this doubles the time spent waiting for the access to
complete

● For a large page table, the operating system may need to perform multiple
accesses to get the full translation

● This can drastically raise the cost of an application’s memory accesses

● There are things that can be done to mitigate this, like using a TLB

11

● But in general, a price is paid for virtual memory’s benefits

Virtual Memory

1. What is used to record the translation from virtual address to physical address?
a. Page table.

2. How many processes share one page table?
a. Only one!

3. Would the use of virtual memory hurt the r/w performance?
a. Yes!

4. Any way to mitigate performance degradation?
a. TLB!
b. TLB: small, fast, hardware implemented cache.
c. TLB misses goes to page table

11

What type of memory naming to use?

1. On your laptop
a. Virtual naming

1. For a tiny power constrained microcontroller
b. Physical naming

1. For a supercomputer that runs one massive simulation at a time
b. Physical naming

1. On your phone
b. Virtual naming

● Let’s take a look at these questions from lecture and try to answer it, given
what we know about physical and virtual addressing

● For a laptop, what kind of of addressing should we use? Virtual or physical?

○ Virtual: Many applications need to run concurrently and share the
physical memory on the machine

● Tiny power constrained microcontroller

○ Physical: Only a single application may need to run at once. Also,
translating virtual addresses to physical addresses requires
computation and energy, something a tiny microcontroller may not
have enough of to spare

● A super computer that runs one massive simulation

○ Physical is more performant since it doesn’t need to waste CPU cycles
on translating, and it’s running one application so there’s no
multiplexing of the physical memory

● Phone:

○ Virtual: Same as laptop

12

Abstractions

● How can two different computers exchange data?
○ Complex process, involves many different components, links, etc.
○ Computers may have different hardware, operating systems, …

● Abstractions avoid us having to worry about this
○ A way of reducing implementation complexity into simpler concepts
○ Focus on their abstraction paradigm

● Many examples for abstractions in modern systems
○ Files, Terminals (TTYs), …

● Today: sockets!

● First, let’s talk about abstractions

● Computers are composed of components with varying degrees of complexity.

● Abstractions provide a more friendly way to interact with that complexity

● For a computer-centric example, when you want to perform some
calculations, say adding numbers together, you don’t have to think about
which transistors need to be turned on and off; you just pop open your
calculator and press some keys

● Similarly, when developers (in this case you) write applications that need to
communicate over the network, they don’t want to think about how
communication protocols work or how their application will share a single
physical interface with other processes that are running on the machine. They
want some abstraction that makes all of that easier so that they can focus on
their application logic.

● Today, we’ll talk about the most commonly used networking abstraction,
sockets!

What are sockets? And connections?

● Connection
○ Many different definitions!
○ In this context: an established method to communicate between

 a process on one host (A) and a process on another host (B)
○ A communication channel
○ An abstraction; in this case spanning multiple (physical) systems

● Socket
○ An endpoint of a given connection

■ Connections are established between two sockets
○ Just another abstraction! The system-local abstraction of a connection

● In this context, a connection refers to a communication between two
processes.

● Those two processes can be on the same machine or on different machines
that are connected via a network.

● A socket is the local abstraction that’s used to interact with that connection.

● So imagine a communication channel with a host/process on each end. Each
host’s view of the channel is that of a socket.

Client – Server Communication

Client

● Actively initiates the connection

● Typically “sometimes on” (e.g., web
browser on your phone / laptop)

● Needs to dial the server
→ thus requires its address!

Server

● Passively listens for and accepts
connections

● Typically “always on” (e.g., web server for
google.com in some data center)

● Must be reachable under some address

● A paradigm describing how a connection is initiated between two sockets

Recall: a connection is established between two processes on some hosts

Thus, an address is composed of a host identifier (IP address) and a process identifier (port number)

● Next, let’s discuss a common communication paradigm.

● Oftentimes, the relationship between two hosts is asymmetrical.

● The way that we normally interact with other machines follows the
client-server paradigm

● In this paradigm, there is a server that’s constantly listening for new attempts
to connect.

● Conversely, there are clients that try to connect for temporary sessions.

http://google.com

● There are two types sockets/connections that are generally used

● The first is a TCP or connection-oriented socket

● TCP stands for transmission control protocol, and it’s used for when a client
and server want their connection to persist

● This means that once established, the connection between the client and
server will continue to exist until one of them terminates it

● And they can continually exchange data over this connection

● Implementations of the TCP protocol on the client and server work with each
other to ensure that data arrives intact and in order

● Weird things can happen over a network, and sometimes things get
rearranged or lost entirely

● The TCP protocol acts to mitigate these occurrences

● These types of connections are used when its important for all of the data to
arrive intact and in order

● For example, streaming a movie or downloading a file

Stream Sockets (TCP): Connection-oriented

16

Create a socket

Bind the socket
(assign to a given host

and port identifier)

Listen for client
(Wait for incoming connections)

Accept connection

Receive Data

Send data

Server

Client

Create a socket

Connect to server

Send data

establish connection

data (request)

Receive data

data (reply)

socket()

bind()

listen()

accept()

read()

write()

socket()

connect()

write()

read()

Listening socket

Bound to just the local
host & port address

Connected socket

Bound to both local
and remote host &

port address

● The next type of socket is a UDP socket, or a connectionless socket

● UDP stands for User Datagram Protocol

● Unlike a TCP connection, this connection does not persist

● The client and server’s implementations of these protocols don’t keep track of
order or arrival

● When sending the data, the sender essentially thinks: “I hope it gets to its
destination, but I’m not going to worry about it”

● These types of connections are used when its not important that data arrives
intact or in order

● For example: Video conferencing. “I really hope that last image of the user’s
face arrived. But if it doesn’t, I’m not going to worry about it. I have new
images to send!”

Datagram Sockets (UDP): Connectionless

17

Create a socket

Bind the socket

Receive data

Send data

Server
Client

Create a socket

Bind the socket

Send data
data
(request)

Receive data

data
(reply)

socket()

bind()

recvfrom()

sendto()

socket()

bind()

sendto()

recvfrom()

Assignment 1
● Write a pair of programs implementing the server – client

connection-oriented socket paradigm
○ Using “stream sockets” (TCP)

● Two files you’ll modify: client.go and server.go

● Having a client send data to a server
○ And let the server print this data

● This precept does not address all requirements of the assignment!
Purpose is to give you an idea of how to get started.

● For assignment 1, you’ll implement a client and server in go
● They will communicate with each other using sockets
● In this precept, we’ll walk you through a few useful functions that will help you

start the assignment when it’s released

18

Client – Milestone 1: Connect to a Server

● We’ll need to retrieve the server address
from the command line
… and connect to it

● go’s net.Dial function looks promising!
○ Read its documentation to figure out the

expected server address format

● Read the server address from the
command line arguments
○ You can find those in os.Args in go!
○ The first argument (os.Args[0]) is always the

executable name

Client

Create a socket

Connect to server

socket()

connect()

returns a Conn object

go
’s

 n
et
.D
ia
l(
)

● We know that the client will need to connect to the server

● We can use the Dial function in the net package for that

● Looking at the examples in the function’s docs, we can see that the address
and port are passed as a single string, being separated by a colon

● A server will listen on an address and a port, and a client will try to contact a
server on an address and a port

● We should take in the address and port of the server from the command line

● To accept input, we can use the Args variable in the os package

● Like C, Args is an array whose first element is the name of the executable

● All other elements are arguments that were passed to the executable when it
was launched

● From the documentation, you can see that net.Dial returns a Conn object and
an Error object

● The conn object is what the client will use to communicate with the server

● The value of the error object should be checked and handled if necessary

19

https://pkg.go.dev/net#Dial
https://pkg.go.dev/os#pkg-variables

Client – Milestone 2: Write Data & Close Connection

● The client will need to read a message from standard input
○ Place the message in a buffer
○ Write the contents of that buffer to the socket

● Use conn.Write to write some bytes to
an established connection

● Use conn.Close to close a connection
○ This informs the opposite end socket that the

connection is no longer established
○ Both sides can close a connection!

Send datadata Write()

Close connection Close()close

conn
(established socket)

● Now that we have a socket that we can use to communicate with the server,
we should take in input from the command line that we will then send to the
server

● There are any number of methods. If you’re unsure of how to do that, some
googling should suffice.

● Once you have input saved in a buffer, you can call the Write method of the
conn object to send it to the server

● Once the client sends the message to the server, it should exit. Before doing
this, the client should invoke conn’s Close method to close the connection

20

https://pkg.go.dev/os#Stdin
https://pkg.go.dev/net#Conn:~:text=Write(b%20%5B%5Dbyte)%20(n%20int%2C%20err%20error)
https://pkg.go.dev/net#Conn:~:text=Write%20operations%20will%20be%20unblocked%20and%20return%20errors.-,Close()%20error,-//%20LocalAddr%20returns%20the%20local%20network%20address%2C%20if%20known

Server – Milestone 1: Create a Listening Socket

● To accept connections, our server must
create a listening socket
○ The net.Listen function does that!
○ Returns a Listener, which owns a socket

● net.Listen takes a listen address
○ Host- and process-address of server (IP & port)
○ A server can have multiple host addresses!

Listening on “localhost” or “127.0.0.1” only
allows local connections.

● Use fmt.Sprintf to combine the
host-address and port number

Create a socket

Bind the socket
(assign to a given host

and port identifier)

Listen for client
(Wait for incoming connections)

Server

socket()

bind()

listen()

go
’s

 n
et
.L
is
te
n(
)

Returns a net.Listener

● Next, we’ll go over some things that will be useful for implementing a server

● Remember that the relationship between a client and server is asymmetrical,
a client proactively establishes connections while a server listens for incoming
connection requests

● For the server, we need to create a listening socket that waits for incoming
connection requests

● Let’s take a look at the documentation to see what we need to pass to
net.Listen

● Similar to net.Dial, listen takes a network, in our case tcp, and an address
string, which is a concatenation of an ip address and port number

● It then returns a listener object, which the server can use

21

https://pkg.go.dev/net#Listen

Server – Milestone 2: Accept a Connection & Read Data

● A Listener can accept an incoming
client connection with the Accept method
○ returns a net.Conn, same as on Client!

● net.Conn can receive data through the
Read() method
○ Takes a buffer as argument

● Accept a client connection

net.Listener

Accept a connectionAccept()
blocks until a

client connects!

Client establishing

connection

go’s net.Conn
(owns a connected
socket underneath)

Receive Data
message

Read()

● Now that we’ve created a listening socket, we can invoke its accept method.
This method blocks until a new connection attempt is received

● When it returns and execution of the program is allowed to proceed, it returns
both a connection object and an error object

● We can check the value of this error object to see if anything went wrong

● And we can use the returned connection object to communicate with the
client that requested the connection

● Note that there are now two sockets on the server side

● There’s the listening socket that is always on the lookout for incoming
connection requests

● And there’s the socket for the established connection, which is used to send
and receive data to a client that has already connected

● We can then use the conn object’s read method to take in data that has been
sent by the client

● From the documentation, we can see that the read method takes in a buffer
and returns the number of bytes that were read from the connection and
saved to that buffer, in addition to an error object

● We should then create a buffer to pass into the read function

22

https://pkg.go.dev/net#Conn:~:text=Read(b%20%5B%5Dbyte)%20(n%20int%2C%20err%20error)

Server – Milestone 3: Handling a Client Close()

● Both sides can close a connection
○ What if that happens during a Conn.Read()?

● Conn.Read() returns an EOF error!
○ “End of file”

● Check for this error.
If it occurs, close the connection.
○ err may be set to nil – check for this first!
○ err provides the Error() method, which returns

error codes as strings

go’s net.Conn
(owns a connected
socket underneath)

Receive Data
close

Read()

EOF

● Both the client and server are able to close a connection

● What should the server do if the client closes a connection?

● Remember that the read method returns an error object

● We can check the value of this error object to determine if the client has
closed the connection from the other side

23

Tips and Common gotcha
● fmt.Sprintf could be handy

● Don’t print the entire buffer

● Convert bytes to string when printing

● Client needs to close() at end of connection

● EOF is not a character, it’s a type of error

● fmt.Sprintf can help you concatenate strings!

● Don’t print the entire buffer. You will make buffers with a fixed size and if a

message doesn’t fill the buffer completely, then printing it out in its entirety

may result in weird things happening

● The buffers that you’ll make are basically byte arrays. Convert them to strings

before printing!

24

