
Course Overview

COS 316: Principles of Computer System Design
Lecture 2

Wyatt Lloyd & Rob Fish



Course Staff: Intros
• Yang Duan 
• Sofiia Druchyna
• Jianan Lu 
• Minhao Jin
• Christopher Branner-Augmon 
• Nan Li 
• Alan Zhang 

• Robert Fish
• Wyatt Lloyd

• TBD LabTAs



Learning Objectives & Course Components
• System Design Principles

• Lectures
• Exams

• Skills (Practice)
• Precepts
• Programming Assignments



Learning Objectives: 
System Design Principles
• Appreciate trade-offs in designing and building systems

• Generality vs. performance, performance vs. security, …
• Understand how systems work

• Common high-level techniques in systems
• Reasoning about concurrency

• Understand the general systems stack, how it fits together, 
and some of how it works
• OS, Network, Distributed Systems, Security



Lectures
• Attend!

• Active thinking through concepts (you)
• Active calibration of teaching (us)
• Review each lecture afterwards, ask questions in Office Hours

• Explore fundamental concepts, 
ways of thinking, 
important parts of systems stack,
cutting-edge research



Lectures
• 5 Major Themes:

• Naming
• Layering
• Caching
• Concurrency
• Access Control



Learning Objectives: Skills
• Go programming language, and "Systems" programming

• Version control with git

• Working in groups (sometimes!)

• "Systems programming": sockets programming, 
concurrency, modular design, unit testing, performance 
measurement, ...



Precepts
• Attend!

• Hands on, active learning in small groups
• Bring your laptop!

• Coupled primarily with the programming assignments



Programming Assignments
• You’re Building a Web Framework!

• Set of libraries and tools for building complex web applications
• Abstracts connection and protocol handling
• Routes requests to controllers/handlers
• Caching for common queries and computations
• Multiplexes concurrent access to databases
• Translates database objects into programming language constructs
• User authentication and authorization

• Examples: Rails, Django, Express, Apache Struts, Laravel



WARNING
Systems Building is not just Programming
• COS 126 & 217 told you how to design & structure your 

programs.
• This class doesn’t.

• If your system is designed poorly, it can be much harder to get 
right!
• Conversely, assignments won't require algorithms or data 

structures you're not already familiar with.
• Your friends:

• Discussing potential solutions before implementing (with TAs or 
classmates)

• Test-driven development



Assignments: Collaboration & Resources
This slide is really important
• You can, and should use general resources available on the 

Internet to complete assignments:
• Go documentation, Stackoverflow, open source projects
• Mailing lists, chat rooms, etc...
• Cite sources in your README!

• You cannot use AI tools like Copilot or ChatGPT
• For partner assignments, you can work with a partner. For solo 

assignments you can discuss high-level challenges and ideas for 
addressing them. You cannot talk about or view code with any 
other students.
• Take-a-walk rule: If you discuss the assignment with other teams, do 

something else for an hour before returning to your code 



Assignments: Collaboration & Resources 
https://www.cs.princeton.edu/courses/archive/fall24/cos316/policies.html



Assignment Partners
• 2 will be with partners

• 3 will be solo



Assignments: Submitting and Grading
• Submitting happens whenever you "push" to your "master" 

branch on GitHub
• You can push as many times as you'd like (we encourage you to do 

so often)

• Grading is automatic and immediate
• There is no penalty for multiple submissions. We will use your 

highest graded submission (push)
• Each automatic grading is posted as a comment to the last commit 

of each push. It includes a break down of tests cases, including 
which failed.



Programming Assignment Late Penalties
• 90% for work submitted up to 24 hours late
• 80% for work submitted up to 2 days late
• 70% for work submitted up to 3 days late
• 60% for work submitted up to 5 days late
• 50% for work submitted after 5 days late



Programming Assignment Late Days
• 3 late days total for the semester

• Granularity of 1 day
• 1 minute late is 1 day late
• 23 hours and 59 minutes late is 1 day late

• Assigned retroactively to give you the best possible overall grade
• We do this for you!

• Additional late days? No!
• Only w/ involvement of your dean or with a doctor’s note



EdStem
• Great place for questions and answers

• Use EdStem in lieu of email in almost all cases
• Can send course staff a message using private posts

• Post conceptual questions about lecture material or assignments

• Not for debugging your code
• Go to office hours to learn how to do that!

• Expectations: We will check EdStem and answer questions once a 
day, on weekdays



Programming Assignment Support
• This is a 3xx class: assignments are more challenging and 

with less direct support

• Office hours, office hours, office hours!

• TAs and LabTAs will help you learn how to think about and 
approach solving a problem

• They will not debug your code for you
• They are not allowed to touch your laptop!



Exams
• Midterm in TBD evening of midterm week

• 3 hour “no time pressure” exam
• Midterm review session during week after fall break

• Review OF the midterm not for it

• Final on December 15, 2024 from 4-7pm
• 3 hour “no time pressure” exam
• Weakly cumulative (i.e., most questions from 2nd half of course, but 

some from 1st half)



Grading
• 50% - Programming Assignments

• 5 Assignment, each worth 10%

• 50% - Exams
• Midterm and final each 25%



Changes from prior semesters
• Based on learning goals



Learning Objectives & Course Components
• System Design Principles

• Lectures
• Exams

• Skills (Practice)
• Precepts
• Programming Assignments




