
COS226 Precept 3 Fall ’24
Precept Outline• Review of Lectures 5 and 6:
– Comparators and Comparables
– Elementary sorts
– Mergesort

Relevant Book Sections• Book chapters: 2.1, 2.2 and 2.5

A. Review: O/Ω Notation + Elementary Sorts + Mergesort + Comparable/Comparator

Your preceptor will briefly review key points of this week’s lectures. They may refer to the warm-up exercise andthe code snippet shown below.
Warm-up: Let f(n) = 3n+ 4n log2 n+ 8

√
n log2 n. Select all that apply.

() f(n) = O(n)() f(n) = Ω(n)() f(n) = O(
√
n log n)() f(n) = Ω(

√
n log n)() f(n) = O(n log n)() f(n) = Ω(n log n)() f(n) = O(n2)() f(n) = Ω(n2)() f(n) = O(log n)() f(n) = Ω(log n)() f(n) = O(2n)() f(n) = Ω(2n)

1 public class YourClass implements Comparable <YourClass > {
2 public int compareTo(YourClass that) {
3 // returns int > 0 if this > that
4 // returns int < 0 if this < that
5 // returns 0 otherwise
6 }
7
8 private static class YourComparator implements Comparator <YourClass > {
9 public int compare(YourClass obj1 , YourClass obj2) {
10 // returns int > 0 if obj1 > obj2
11 // returns int < 0 if obj1 < obj2
12 // returns 0 otherwise
13 }
14 }
15 public static Comparator <YourClass > yourComparison () {
16 return new YourComparator ();
17 }
18 ...
19 }

B. Comparable & Comparator

The code snippet below shows the instance variables of a class Movie, and partially filled instance methods thatshould support comparing elements of this class in three ways:
• by alphabetical order of title (the default order);
• by release year; and
• by rating (0-5 stars).
Fill in the blanks numbered 1 to 6.
1 public class Movie implements ______________ (1) ______________ {
2 private String title;
3 private int year;
4 private int rating;
5
6 public int compareTo(Movie m) {
7 return ______________ (2) ______________;
8 }
9
10 public static Comparator <Movie > byYear () {
11 return new YearComparator ();
12 }
13
14 private static class YearComparator implements ______________ (3) ______________ {
15 public int compare(Movie m1, Movie m2) {
16 return ______________ (4) ______________;
17 }
18 }
19
20 public static Comparator <Movie > byRating () {
21 return new RatingComparator ();
22 }
23
24 private static class RatingComparator implements ______________ (5) ______________ {
25 public int compare(Movie m1, Movie m2) {
26 return ______________ (6) ______________;
27 }
28 }
29 ...
30 }

2

C. Sorting Algorithms

Part 1: Spring’24 Midterm Problem

Given two integer arrays, a[] and b[], the symmetric difference between a[] and b[] is the set of elements thatappear in exactly one of the arrays. Design an algorithm that receives two sorted arrays, each consisting of n
distinct elements, and outputs the size of their symmetric difference.
For full credit, it must useΘ(1) extra memory and its running time must beΘ(n) in the worst case (the arrays a[]
and b[] should not be modified). A solution withO(n log n) runtime andO(n) extra memory that does not satisfythe full credit performance requirements receives partial (at least half) credit.

Part 2: Sorting Lower Bounds

Imagine you are given unlimited access to call a method (say, via “the cloud”) which costs your program constant
time in order to help sort an array.

(a) Suppose the method is sum(int[] a, int i, int j), which, given two indices 0 ≤ i ≤ j < n, returns the sum∑j
k=i a[k]. Can you use it to implement a (comparison-based) sorting algorithm with O(n) running time? Ifso, how? If not, why not?

3

(b) Suppose the method is min(int[] a, int i), which returnsmini≤k<n{a[k]}. Can you use it to implement a(comparison-based) sorting algorithm with O(n) running time? If so, how? If not, why not?

Part 3: Equality of Histograms

The histogram of an array s[] of samples is the set of pairs (i, fi), where fi is the number of indices j such that
the jth sample s[j] has value i. (That is, fi = |{j : s[j] = i}|.)
Let a[] and b[] be integer arrays representing sample sequences. Design an algorithmwithO(n log n)worst-case
running time that identifies whether the histograms of a and b are equal (i.e., if, for all i, the frequency of i is the
same in a and b).

D. Assignment Overview: Autocomplete

Your preceptor will introduce and give an overview of your third assignment. Don’t hesitate to ask questions!Summary of the assignment:
• Implement a Term class, which stores a word (as a string) and a numeric weight, and also implements compara-tors for comparing terms in natural order, in decreasing order of weight, and lexicographically based on thefirst r characters.
• Create a data type Autocomplete that initializes with given arrays of terms and weights, and supports methodsto return the weight of a term, the top matching term, and the top k matching terms in descending order ofweight.
• Implement a BinarySearchDeluxe class, which should use binary search to find the first and last index of a given
key in a sorted array (these are important primitives to the Autocomplete class).

4

https://www.cs.princeton.edu/courses/archive/fall24/cos226/assignments/autocomplete/specification.php

E. Optional Bonus Problems

Part 1: Three-way Mergesort

(Two-way) Mergesort is quite a simple algorithm to describe: to sort n elements, divide the array in half, (recur-sively) sort each then merge the two halves together. In this exercise, we will study a variant of it: in three-wayMergesort, we divide an array of length n into 3 subarrays of length n
3 , sort each of them and then perform a3-way merge.

Given 3 sorted subarrays of size n
3 , how many comparisons are needed (in the worst case) to merge them to asorted array of size n? Provide your answer in tilde notation.

What is the order of growth of the number of compares in 3-way Mergesort as a function of the array size n?(Here we’re counting the total number, including all recursive calls.)

Given a choice, would you choose 3-way or 2-way mergesort? Justify your answer.

Part 2: (Challenge) Counting Inversions

In an array h of n numbers, an inversion is a pair of elements that isn’t sorted; that is, two indices i and j such that
i < j and h[i] > h[j].

5

Describe an algorithm to compute the total number of inversions of an array of length n in time Θ(n log n). Hint:
think about how you can modify mergesort to achieve this.

6

	Review: O/ Notation + Elementary Sorts + Mergesort + Comparable/Comparator
	Comparable & Comparator
	Sorting Algorithms
	Spring'24 Midterm Problem
	Sorting Lower Bounds
	Equality of Histograms

	Assignment Overview: Autocomplete
	Optional Bonus Problems
	Three-way Mergesort
	(Challenge) Counting Inversions

