
COS226 Precept 2 Fall ’24
Precept Outline• Review of Lectures 3 and 4:
– Stacks and Queues
– Advanced Java

• Stacks: resizing arrays + linked lists

Relevant Book Sections• 1.3 (Queues and Stacks)

A. Review: Stacks, Queues and Iterators/Iterables

Your preceptor will briefly review key points of this week’s lectures.
Here are some code snippets that your instructor might refer to as examples:
1 Stack <String > stack = new Stack <String >();
2
3 stack.push("One");
4 stack.push("Two");
5 stack.push("Three");
6 stack.push("Four");
7 stack.push("Five");
8
9 for (i = 0; i < 5; i++)
10 StdOut.println(stack.pop());

1 Queue <String > queue = new Queue <String >();
2
3 queue.enqueue("One");
4 queue.enqueue("Two");
5 queue.enqueue("Three");
6 queue.enqueue("Four");
7 queue.enqueue("Five");
8
9 for (i = 0; i < 5; i++)
10 StdOut.println(queue.dequeue ());

1 public class YourClass <Item > implements Iterable <Item > {
2
3 public Iterator <Item > iterator () {
4 return new YourClassIterator ();
5 }
6
7 private class YourClassIterator implements Iterator <Item > {
8 // instance variable(s) to keep track of where iterator is
9
10 public boolean hasNext () {
11 // condition to end iteration
12 }
13
14 public Item next() {
15 // returns next item and updates instance variable(s)
16 }
17 }

1 Stack <String > stack = new Stack <String >();
2 // initialize stack
3
4 Iterator <String > iter = stack.iterator ();
5
6 while (iter.hasNext ()) {
7 String s = iter.next();
8 // do something with s
9 }

1 Stack <String > stack = new Stack <String >();
2 // initialize stack
3
4
5
6 for (String s : stack) {
7
8 // do something with s
9 }

B. Stacks and Queues

Part 1: Resizing arrays

In lecture, you saw how the repeated doubling strategy solves the problem of resizing arrays too often. There wasa caveat, however: we resize up at 100% capacity but resize down at 25% (rather than 50%) capacity.
(Warm-up) Recall what goes wrong if we resize down at 50%: give an example of a sequence of push() and pop()operations with Θ(n) amortized cost. The cost of a sequence of operations (as in lecture) is the total number ofarray accesses made throughout their execution.

Consider the following “resizing policies”:
1. Double at 100% capacity, halve at 25%;2. Triple at 100% capacity, multiply by 1/3 at 1/3;3. Triple at 100% capacity, multiply by 2/3 at 1/3;4. Double at 75% capacity, halve at 25%.

Identify which policies have worst-case Θ(n) amortized cost for n operations and which have Θ(1).

Part 2: Linked Lists

Recall that in a singly linked list, each node stores an item (of generic type) and a reference to the next node inthe list. Describe a method that produces a new linked list with the same elements of list but in reverse order.
Assume that the input list is given as its first node. You can create extra nodes or linked lists, but not modifythe input list. Feel free to write code or pseudocode.

2

Part 3: Fall’22 Midterm Problem

We wish to implement a method public static String parseUndos(String str), which takes as input a string
that represents a series of keystrokes and interprets each occurrence of the < symbol as a one-character undorequest. The method returns the string that is obtained after the undo requests are implemented.
For example,
1 String s = parseUndos("Princesses <<<<ton");
2 String t = parseUndos("COM <S217 <<40<<26?<!");
3
4 StdOut.println(s);
5 StdOut.println(t);

prints the strings Princeton and COS226!.

(a) Fill in the two blanks in the following Java implementation of parseUndos().
1 public static String parseUndos(String str)
2 {
3 Stack <Character > stack = new Stack <Character >();
4 for (int i = 0; i < str.length (); i++) {
5 char current = str.charAt(i);
6 if (current != ’<’)
7 _______ // first blank
8 else
9 _______ // second blank
10 }
11 // copy the content of the stack to a new string.
12 String newStr = "";
13 while (!stack.isEmpty ())
14 newStr = stack.pop() + newStr;
15 return newStr;
16 }

(b) Executing the statement parseUndos("COS226!<<<<<<<<<<") yields a(n)
() Stack overflow.
() Stack underflow.
() Infinite loop.
() Return value "COS226!".
() Return value "<<<<<<<<<<".
() None of the above.

3

(c) Assume that the Stack data type is implemented as a resizable array. Howmany times would the array shrinkwhen calling parseUndos(str), where str is a string that consists of 16n non-undo characters followed by
13n undo characters?
Assume that the stack is 100% full after parseUndos processes the first 16n non-undo characters, and recall
that pop() resizes the array (to half of its size) when it reaches 25% capacity.

() 0.
() 1.
() 2.
() Constant strictly greater than 2.
() ∼ 1

4 log n.() ∼ log n.
(d) When the stack is implemented as a linked list, the worst-case running time of parseUndos() on a string oflength n is Θ(n).
() True.
() False.
(e) When the stack is implemented as a resizable array, theworst-case running time of parseUndos() on a stringof length n is Θ(n).
() True.
() False.

C. Assignment Overview: Queues

Your preceptor will introduce and give an overview of your second assignment. Please don’t hesitate to askquestions!
Summary of the assignment.
• Implement a deque data structure, which is a queue that supports insertion and removal of items from bothends. This will be done in Deque.java.
• Implement a randomized queue, which is a queue that differs from a typical queue in that items are removeduniformly at random, not based on the sequence they were added. This will be done in RandomizedQueue.java.
• Implement an application of the randomized queue to read a sequence of strings and print a subset of themuniformly at random. This will be done in Permutation.java.
• Both deque and randomized queue require iterators that support operations in constant worst-case time anduse space efficiently.

4

https://www.cs.princeton.edu/courses/archive/fall24/cos226/assignments/queues/specification.php

D. Optional Bonus Problems

Part 1: Obstructed Skyline (Challenge)

Suppose you are given the shape of a city’s skyline in the form of a length-n array h = [h0, h1, . . . , hn−1] (wherethe height of building i is hi). In other words, the skyline is a 1× n grid where the ith column/building has height
hi ≤ k.
Design an algorithm to find the rectangle with the largest area that is blocked by the skyline. (E.g., your algorithmshould output 2 when h = [2, 1], 4 when h = [2, 2] and 12 with the input drawn below.) It should run inΘ(n) timeand space.

5

	Review: Stacks, Queues and Iterators/Iterables
	Stacks and Queues
	Resizing arrays
	Linked Lists
	Fall'22 Midterm Problem

	Assignment Overview: Queues
	Optional Bonus Problems
	Obstructed Skyline (Challenge)

