
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/21/24 1:49  PM

RANDOMNESS

‣what it is and what it isn’t

‣ Las Vegas and Monte Carlo

‣Karger’s algorithm

‣more applications

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Percolation. Monte Carlo simulation: open random blocked sites.
 
 
 
 
 
 
 
Randomized queues. Remove item chosen uniformly at random.

2

A brief recap: where we’ve already encountered randomness

A brief recap: where we’ve already encountered randomness

3

Test 2: open random sites until the system percolates
Test 7: open random sites with large n
Test 12: call open(), isOpen(), and numberOfOpenSites()
 in random order until just before system percolates
Test 13: call open() and percolates() in random order until just before system
percolates
Test 14: call open() and isFull() in random order until just before system percolates
Test 15: call all methods in random order until just before system percolates
Test 16: call all methods in random order until almost all sites are open
 (with inputs not prone to backwash)
Test 20: call all methods in random order until all sites are open
 (these inputs are prone to backwash)

A brief recap: where we’ve already encountered randomness

4

Tests 1-8 make random intermixed calls to addFirst(), addLast(),
removeFirst(), removeLast(), isEmpty(), and size(), and iterator().
Test 12: check iterator() after random calls to addFirst(), addLast(),
 removeFirst(), and removeLast() with probabilities (p1, p2, p3, p4)
Tests 1-6 make random intermixed calls to enqueue(), dequeue(), sample(),
isEmpty(), size(), and iterator().
Test 16: check randomness of sample() by enqueueing n items, repeatedly calling
 sample(), and counting the frequency of each item
Test 17: check randomness of dequeue() by enqueueing n items, dequeueing n items,
 and seeing whether each of the n! permutations is equally likely
Test 18: check randomness of iterator() by enqueueing n items, iterating over those
 n items, and seeing whether each of the n! permutations is equally likely

A brief recap: where we’ve already encountered randomness

Quicksort is a randomized algorithm.  
Shuffling is needed for performance guarantee.  
 
 
 
 
 
 
 

Hash tables.

5

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

p ≤ p ≥ p

during

≤ p p ≥ p

after

l j h

p

before

l h

RANDOMNESS

‣what it is and what it isn’t

‣ Las Vegas and Monte Carlo

‣Karger’s algorithm

‣more applications
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Pseudorandomness

Computers can’t generate randomness (without specialized hardware).

Pseudorandom functions.

7

Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

A.

B.

C.

D. All of the above.

E. Both B and C.

Randomness: quiz 1

8

The uniform distribution

Coin flip.
 
 

.
 
Roll of a die.
 
 

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6

9

Terminology and notation.
 
“ lands heads” and “ is even” are events with
probabilities , .  

Distribution: all outcome-probability pairs.

C D

ℙ[C lands heads] ℙ[D rolls even]

outcome probability

heads 1/2

tails 1/2

distribution of unbiased coin

The uniform distribution

Coin flip.
 
 

.
 
Roll of a die.
 
 

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6

10

Terminology and notation.
 
“ lands heads” and “ is even” are events with
probabilities , .  

Distribution: all outcome-probability pairs.
[uniform distribution: all probabilities equal]

C D

ℙ[C lands heads] ℙ[D rolls even]

outcome probability

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

distribution of 6-sided die

uniform over
 outcomes2

uniform over
 outcomes6

The uniform distribution

Coin flip.
 
 

.
 
Roll of a die.
 
 

.  
 

Independent coin flips.
 
 
 

.

ℙ[C lands heads] = ℙ[C lands tails] =
1
2

ℙ[D rolls 1] = ℙ[D rolls 2] = ⋯ = ℙ[D rolls 6] =
1
6

ℙ[C1 heads, C2 tails, … Ck heads] =
1
2

×
1
2

⋯ ×
1
2

=
1
2k

11

Terminology and notation.
 
“ lands heads” and “ is even” are events with
probabilities , .  

Distribution: all outcome-probability pairs.
[uniform distribution: all probabilities equal]

C D

ℙ[C lands heads] ℙ[D rolls even]uniform over
 outcomes2

uniform over
 outcomes6

uniform over
 outcomes2k

Flip a coin 6 times and count how often it lands heads. Which count is most likely?

A. 2

B. 3

C. 4

D. All of the above.

E. None of the above.

Randomness: quiz 2

12

Binomial distribution

Experiment. Flip 5000 coins, count # of heads.

13

2,500

RANDOMNESS

‣what it is and what it isn’t

‣ Las Vegas and Monte Carlo

‣Karger’s algorithm

‣more applications
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

n

15

 accesses in worst case
n
2

+ 1

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

・scan the array right-to-left; return once treasure found.

n

16

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

・scan the array right-to-left; return once treasure found.

・look at even entries, then odd; return once treasure found.

n

17

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1

 accesses in worst case
n
2

+ 1

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Proposition. For every deterministic algorithm, there is a 50%-treasure array

where it makes accesses.

 

Pf. Consider the sequence of accesses it makes when all are duds.

The array with duds there and treasures elsewhere requires accesses.

n

n
2

+ 1

n/2
n
2

+ 1

18

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 

 
Randomized algorithms:

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

 

 

 

 

 

Fails with probability .

n

n/2
n

=
1
2

19

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 

 
Randomized algorithms:

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

・look at two uniformly random entries, return 1st treasure found (if any).

 

 

 

 

Fails with probability .

n

1
2

×
1
2

20

1 flip lands tails

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 

 
Randomized algorithms:

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

・look at two uniformly random entries, return 1st treasure found (if any).

・look at three uniformly random entries.

 

 

 

Fails with probability .

n

1
2

×
1
2

×
1
2

21

1 flip lands tails

2 flips land tails

A toy problem

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 

 
Randomized algorithms:

・look at a[StdRandom.uniformInt(n)], return treasure (if found).

・look at two uniformly random entries, return 1st treasure found (if any).

・look at three uniformly random entries, return 1st treasure found (if any).

・look at uniformly random entries, return 1st treasure found (if any).

 

 

Fails with probability .

n

k

1
2k

22

1 flip lands tails

3 flips land tails

⋯

2 flips land tails

Suppose 1% of the array contains treasure and 99% contain duds. Then
a[StdRandom.uniformInt(n)] finds a treasure with probability

A. 1%

B. 10%

C. 50%

D. 99%

E. None of the above.

Randomness: quiz 3

23

Rare treasures and biased coins

Treasure hunt. Length- array with 1% treasures, 99% duds.  
 
 
 
 
 

 
Randomized algorithm:

・look at uniformly random entries, return treasure (if found).
 
Failure probability = [k biased coin flips land tails]
 = .  

 
Example. If we want , setting suffices!

n

k

ℙ

(0.99)k

0.99k < 1 % k = 459

24

outcome probability

heads 1/100

tails 99/100

distribution of 99%-1%  
biased coin

Monte Carlo algorithms

Monte Carlo algorithm.

・Running time is deterministic.  
[doesn’t depend on coin flips]

・Not guaranteed to be correct.
 
 
 
 
Error reduction.  
If and want failure , repeat times.
 
Then, .

ℙ[A fails] = p ≤ q k ≥ logp q

ℙ[A fails k times] = pk ≤ q

25

independence

Las Vegas algorithms

・Guaranteed to be correct.

・Running time depends on outcomes of random coin flips.

Ex. Quicksort, quickselect.

26

≤ p p ≥ p

lo j hi

Las Vegas vs. Monte Carlo

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return only when treasure found.
 
Returns in 1st try with probability .

n

1/2

27

Las Vegas vs. Monte Carlo

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return only when treasure found.
 
Returns in 1st try with probability .
Returns in 2nd try with probability .

n

1/2

1/4

28

Las Vegas vs. Monte Carlo

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return only when treasure found.
 
Returns in 1st try with probability .
Returns in 2nd try with probability .  

Returns in kth try with probability .

n

1/2

1/4

⋮

1/2k

29

⋯

Las Vegas vs. Monte Carlo

Treasure hunt. Length- array with 50% treasures, 50% duds.  
 
 
 
 
 

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return only when treasure found.
 
Returns in 1st try with probability .
Returns in 2nd try with probability .  

Returns in kth try with probability .
 
Expected # of array accesses:

n

1/2

1/4

⋮

1/2k

1 × ℙ[A makes 1 access] + 2 × ℙ[A makes 2 accesses] + 3 × ℙ[A makes 3 accesses] + ⋯

30

same formula as
quicksort (for compares)

At most how many array accesses made by Las Vegas treasure hunt?

A. 1

B. 2

C.

D.

E. None of the above.

n/2

n

Randomness: quiz 4

31

RANDOMNESS

‣what it is and what it isn’t

‣ Las Vegas and Monte Carlo

‣Karger’s algorithm

‣more applications
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Goal. Find cut in undirected graph with fewest edges (for any source and sink).
 
Equivalent. Smallest min st-cut among all pairs (s, t) with antiparallel edges of capacity 1.

Global mincut problem

33

Goal. Find cut in undirected graph with fewest edges (for any source and sink).  
 
Deterministic algorithms.

・Brute-force: iterate over all cuts, return smallest. [cuts exponential time!]

・Ford-Fulkerson-based: pick any as source, try every as target. [runs of FF runtime.]
2V−1 − 1 ⟹

s t V − 1 ⟹ Θ(VE2)

Global mincut problem

34

Goal. Find cut in undirected graph with fewest edges (for any source and sink).  

Idea. Pick a random cut.

Global mincut problem

35

Uniformly? There may be 1 mincut but total cuts — takes a lot of luck to find it.  

Example.

2V−1 − 1

Global mincut problem

36

V / 2 vertices on each side

Algorithm.

・Assign a random weight (uniform between 0 and 1) to each edge .

・Run Kruskal’s MST algorithm until 2 connected components left.

・Return cut defined by connected components.
 
Probability of finding a mincut: . [no mincut edges in each connected component]  

Run algorithm many times and return best cut.

e

≈
1

V2

Karger’s global mincut algorithm

37

Algorithm.

・Assign a random weight (uniform between 0 and 1) to each edge .

・Run Kruskal’s MST algorithm until 2 connected components left.

・Return cut defined by connected components.
 
Probability of finding a mincut: . [no mincut edges in each connected component]  

Run algorithm many times and return best cut.  
 
 
 
 
 

Remark 1. Finds global mincut in time — better than Ford–Fulkerson-based!
Remark 2. With clever idea, improved to time (still randomized).

e

≈
1

V2

Θ(V2E log E)

Θ(V2 log3 V)

Karger’s global mincut algorithm

38

Smallest # of repetitions of Karger’s algorithm to get correct answer with 99% probability?

A.

B.

C.

D.

E. None of the above.

Θ(1)

Θ(V)

Θ(V2)

Θ(V3)

Randomness: quiz 5

39

(1 −
1
x)

kx

≤ e−k

(1 −
1

V2)
5V2

≤ e−5 ≈ 0.67 %

⇓

Bernoulli’s inequality

RANDOMNESS

‣what it is and what it isn’t

‣ Las Vegas and Monte Carlo

‣Karger’s algorithm

‣more applications
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Uniform distribution in unit circle

Goal. Generate a random point in unit circle.  

Rejection sampling.

・Generate a random point in 2-by-2 square centered at origin.

・If point is inside circle, use that point;  
otherwise, repeat.  
 
 
 
 
 
 
 
 

Remark. If out of samples in unit circle, .s t
s
t

≈
π
4

41

double x, y;
do {
 x = 2.0 * Math.random() - 1.0;
 y = 2.0 * Math.random() - 1.0;
} while (x*x + y*y > 1.0);
StdOut.println("(" + x + ", " + y + ")");

random (x, y) in square

repeat until it’s in the circle

x

y

in

(0, 0)

(1, 1)

out

used in Fraud Detection!

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

42

all n ! permutations
equally likely

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

43

all n ! permutations
equally likely

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.
 
 
 
 
 
 
 
 

 
Challenge. Design in-place linear-time algorithm using StdRandom.uniformInt().

44

all n ! permutations
equally likely

Which of the following generate a uniformly random permutation of array a[]?

A. StdRandom.shuffle(a);

B. for (int i = 0; i < a.length; i++)

 exch(a, i, StdRandom.uniformInt(a.length));

C. for (int i = a.length - 1; i > 0; i--)

 exch(a, i, StdRandom.uniformInt(i + 1));

D. A and C.

E. All of the above.

Randomness: quiz 5

45

Approximate counting

Goal. Count to with less memory: from to .
 
 
Why bother?
Database with 1 billion entries: bits, but bits.  
Factor-6 improvement matters a lot.

≤ n log2 n Θ(log log n)

log2(109) ≈ 30 log2 log2(109) ≈ 5

46

Approximate counting

Goal. Count to with less memory: from to .
 
 
Why bother?
Database with 1 billion entries: bits, but bits.  
Factor-6 improvement matters a lot.

≤ n log2 n Θ(log log n)

log2(109) ≈ 30 log2 log2(109) ≈ 5

47

https://cloud.google.com/bigquery/docs/reference/standard-sql/hll_functions

https://cloud.google.com/bigquery/docs/reference/standard-sql/hll_functions

Beyond this course

・Approximation algorithms [intractability: stay tuned!]

・Machine learning [randomized MW]

・Optimization [stochastic gradient descent]

・Cryptography [average-case hardness]

・Complexity theory [derandomization]

・Quantum computation [Shor’s factoring algorithm]

・Networking [load balancing]

・Graphics [procedural generation]

・Mathematics [probabilistic method]

・Health sciences [randomized control trials]

 
 
 
 
ORF 309. Probability and Stochastic Systems 
COS 433. Cryptography

48

IBM Quantum System One

https://xkcd.com/221/

int getRandomNumber()
{
 return 4; // chosen by fair dice roll.
 // guaranteed to be random.
}

Lecture Slides © Copyright 2024 Marcel Dall'Agnol, Robert Sedgewick, and Kevin Wayne

Credits

50

image source license

Quarter Adobe Stock Education License

6-sided dice Adobe Stock Education License

20-sided die Adobe Stock Education License

Lava lamps Fast Company

Coin Toss clipground.com CC BY 4.0

IDQ Quantum Key Factory idquantique.com

SG100 protego.bytehost16.com

Las Vegas Adobe Stock Education License

Monte Carlo Adobe Stock Education License

Treasure chests Adobe Stock Education License

Random number generator XKCD CC BY-NC 2.5

https://stock.adobe.com/images/close-up-of-a-us-quarter-dollar-1994-png-isolated-on-transparent-background/531124379
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/playing-dice-white-dice-falling-3d-illustration-transparent-dices-two/522136779
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/one-brown-marbled-w20-or-20-sided-dice/563897479
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.fastcompany.com/90137157/the-hardest-working-office-design-in-america-encrypts-your-data-with-lava-lamps
https://clipground.com/images/toss-clipart-1.jpg%20%20CC%20BY%204.0
https://creativecommons.org/licenses/by/4.0/
https://www.idquantique.com/wp-content/uploads/Quantis-AIS-31-Validated-RNG-500-x-400-1.png
http://protego.byethost16.com/images/sg100_big.jpg
https://stock.adobe.com/images/aerial-las-vegas-at-night/274951182
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-monte-carlo-casino-gambling-and-entertainment-complex-located-in-monte-carlo-monaco-cote-de-azul-france-europe/400966373
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cartoon-chest-treasure-box-with-gold-coins-and-gemstones-vector-pirate-treasure-open-wooden-chests-with-gold-jewel-crystals-or-empty-with-locks-pirate-treasure-game-asset/523663701
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://xkcd.com/221/
https://creativecommons.org/licenses/by-nc/2.5/

