Last updated on 11/21/24 1:49PM

- **‣** *what it is and what it isn't*
- **‣** *Las Vegas and Monte Carlo*
	-
	-

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Percolation. Monte Carlo simulation: open random blocked sites.

Randomized queues. Remove item chosen uniformly at random.

2

A brief recap: where we've already encountered randomness

3

Test 2: open random sites until the system percolates Test 7: open random sites with large n Test 12: call open(), isOpen(), and numberOfOpenSites() in <mark>random</mark> order until just before system percolates Test 13: call open() and percolates() in random order until just before system percolates Test 14: call open() and isFull() in random order until just before system percolates Test 15: call all methods in random order until just before system percolates Test 16: call all methods in **random** order until almost all sites are open (with inputs not prone to backwash) Test 20: call all methods in random order until all sites are open (these inputs are prone to backwash)

4

Tests 1-8 make random intermixed calls to addFirst(), addLast(), removeFirst(), removeLast(), isEmpty(), and size(), and iterator(). Test 12: check iterator() after random calls to addFirst(), addLast(), Tests 1-6 make random intermixed calls to enqueue(), dequeue(), sample(), isEmpty(), size(), and iterator(). Test 16: check randomness of sample() by enqueueing n items, repeatedly calling sample(), and counting the frequency of each item

```
 removeFirst(), and removeLast() with probabilities (p1, p2, p3, p4)
```
Test 17: check randomness of dequeue() by enqueueing n items, dequeueing n items, and seeing whether each of the n! permutations is equally likely Test 18: check randomness of iterator() by enqueueing n items, iterating over those n items, and seeing whether each of the n! permutations is equally likely

A brief recap: where we've already encountered randomness

Quicksort is a randomized algorithm.

Shuffling is needed for performance guarantee.

Hash tables.

5

 $\geq p$

RANDOMNESS

‣ *what it is and what it isn't*

- **‣** *Las Vegas and Monte Carlo*
- **‣** *Karger's algorithm*
- **‣** *more applications*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Pseudorandomness

Computers can't generate randomness (without specialized hardware).

Pseudorandom functions.

Class Random

java.lang.Object java.util.Random

All Implemented Interfaces:

Serializable

Direct Known Subclasses:

SecureRandom, ThreadLocalRandom

Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

D. All of the above.

E. Both B and C.

Randomness: quiz 1

The uniform distribution

9

Terminology and notation.

"C lands heads" and "D is even" are events with probabilities $P[C$ lands heads], $P[D$ rolls even].

Distribution: all outcome-probability pairs.

distribution of unbiased coin

The uniform distribution

10

Terminology and notation.

"C lands heads" and "D is even" are events with probabilities $P[C$ lands heads], $P[D$ rolls even].

Distribution: all outcome-probability pairs.

[uniform distribution: all probabilities equal]

distribution of 6-sided die

uniform over 6 *outcomes*

The uniform distribution

Independent coin flips.

 $P[C_1 \text{ heads}, C_2 \text{ tails}, ... C_k \text{ heads}] = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2k}.$ 1 2 \times 1 2 \cdots \times 1 2 = 1 2*k*

Distribution: all outcome-probability pairs. [uniform distribution: all probabilities equal]

11

Terminology and notation.

"C lands heads" and "D is even" are events with *uniform over*
2 outcomes

> *uniform over* 6 *outcomes*

Flip a coin 6 times and count how often it lands heads. Which count is most likely?

- A. 2
- B. 3
- C. 4
- D. All of the above.
- E. None of the above.

Binomial distribution

Experiment. Flip 5000 coins, count # of heads.

RANDOMNESS

- **‣** *what it is and what it isn't*
- **‣** *Las Vegas and Monte Carlo*
- **‣** *Karger's algorithm*
- **‣** *more applications*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Treasure hunt. Length- n array with 50% treasures, 50% duds.

 accesses in worst case n 2 $+1$

Deterministic algorithms.

・scan the array left-to-right; return once treasure found.

Treasure hunt. Length- n array with 50% treasures, 50% duds.

Deterministic algorithms.

 accesses in worst case n 2 $+1$ *accesses in worst case n* 2 $+1$

- ・scan the array left-to-right; return once treasure found.
- ・scan the array right-to-left; return once treasure found.

Treasure hunt. Length- n array with 50% treasures, 50% duds.

Deterministic algorithms.

- ・scan the array left-to-right; return once treasure found.
- ・scan the array right-to-left; return once treasure found.
- ・look at even entries, then odd; return once treasure found.

Treasure hunt. Length- n array with 50% treasures, 50% duds.

Proposition. For every deterministic algorithm, there is a 50%-treasure array where it makes $\frac{1}{2} + 1$ accesses. *n* 2 $+1$

Pf. Consider the sequence of $n/2$ accesses it makes when all are duds. The array with duds there and treasures elsewhere requires $\frac{1}{2} + 1$ accesses.

n 2 + 1

Treasure hunt. Length- n array with 50% treasures, 50% duds.

Randomized algorithms:

• look at a [StdRandom.uniformInt(n)], return treasure (if found).

Treasure hunt. Length- n array with 50% treasures, 50% duds.

- ・look at a[StdRandom.uniformInt(n)], return treasure (if found).
- look at two uniformly random entries, return 1st treasure found (if any).

Randomized algorithms:

Fails with probability
$$
\frac{1}{2} \times \frac{1}{2}
$$
.

20

1 flip lands tails

Treasure hunt. Length- n array with 50% treasures, 50% duds.

Randomized algorithms:

Fails with probability $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$. 1 2 \times 1 2 \times 1 2

- ・look at a[StdRandom.uniformInt(n)], return treasure (if found).
- look at two uniformly random entries, return 1st treasure found (if any).
- ・look at three uniformly random entries.

21

1 flip lands tails 2 flips land tails

Treasure hunt. Length- n array with 50% treasures, 50% duds.

Randomized algorithms:

- ・look at a[StdRandom.uniformInt(n)], return treasure (if found).
- look at two uniformly random entries, return 1st treasure found (if any).
- look at three uniformly random entries, return 1st treasure found (if any).
- look at k uniformly random entries, return 1^{st} treasure found (if any). *k*

22

1 flip lands tails 3 flips land tails 2 flips land tails

Suppose 1% of the array contains treasure and 99% contain duds. Then a[StdRandom.uniformInt(n)] **finds a treasure with probability**

- A. 1%
- B. 10%
- C. 50%
- D. 99%
- E. None of the above.

Rare treasures and biased coins

Treasure hunt. Length- n array with 1% treasures, 99% duds.

Randomized algorithm:

• look at k uniformly random entries, return treasure (if found). *k*

Failure probability $= \mathbb{P}[\mathsf{k}$ biased coin flips land tails] $= (0.99)^k$.

Example. If we want $0.99^k < 1\%$, setting $k = 459$ suffices!

24

distribution of 99%-1% biased coin

Monte Carlo algorithm.

- ・Running time is deterministic. [doesn't depend on coin flips]
- ・Not guaranteed to be correct.

Then, $\mathbb{P}[A \text{ fails } k \text{ times}] = p^k \leq q$. *independence*

Error reduction.

If $P[A \text{ fails}] = p$ and want failure $\leq q$, repeat $k \geq \log_p q$ times.

Las Vegas algorithms

- ・Guaranteed to be correct.
- ・Running time depends on outcomes of random coin flips.
- Ex. Quicksort, quickselect.

Las Vegas vs. Monte Carlo

Treasure hunt. Length- n array with 50% treasures, 50% duds.

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return *only when* treasure found.

Returns in 1st try with probability 1/2.

Las Vegas vs. Monte Carlo

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return *only when* treasure found.

Returns in 1^{st} try with probability $1/2$. Returns in 2nd try with probability 1/4.

Las Vegas vs. Monte Carlo

Randomized algorithm (Las Vegas):

・repeatedly look at uniformly random entry; return *only when* treasure found.

Returns in 1^{st} try with probability $1/2$. Returns in 2nd try with probability 1/4. \bullet

Returns in kth try with probability $1/2^k$.

Randomized algorithm (Las Vegas):

• repeatedly look at uniformly random entry; return *only when* treasure found.

Returns in 1^{st} try with probability $1/2$. Returns in 2nd try with probability 1/4. Returns in kth try with probability $1/2^k$. $\ddot{\cdot}$

Expected # of array accesses: $1 \times P[A$ makes 1 access] + $2 \times P[A$ makes 2 accesses] + $3 \times P[A$ makes 3 accesses] + …

30

same formula as quicksort (for compares)

At most how many array accesses made by Las Vegas treasure hunt?

- A. 1
- B. 2
- C. *n*/2
- D. *n*
- E. None of the above.

RANDOMNESS

- **‣** *what it is and what it isn't*
- **‣** *Las Vegas and Monte Carlo*
- **‣** *Karger's algorithm*
- **‣** *more applications*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Equivalent. Smallest min *st*-cut among all pairs *(s, t)* with antiparallel edges of capacity 1.

Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Deterministic algorithms.

- Brute-force: iterate over all cuts, return smallest. $[2^{V-1}-1]$ cuts \Longrightarrow exponential time!]
- Ford-Fulkerson-based: pick any s as source, try every t as target. $[V-1]$ runs of $FF \implies \Theta(VE^2)$ runtime.]

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Idea. Pick a random cut.

Global mincut problem

Example.

Global mincut problem

Uniformly? There may be 1 mincut but $2^{V-1} - 1$ total cuts — takes a *lot* of luck to find it.

Algorithm.

- Assign a random weight (uniform between 0 and 1) to each edge e .
- ・Run Kruskal's MST algorithm until 2 connected components left.
- ・Return cut defined by connected components.

Probability of finding a mincut: $\approx \frac{1}{172}$. [no mincut edges in each connected component] 1 *V*2

Run algorithm many times and return best cut.

e

Karger's global mincut algorithm

Algorithm.

- Assign a random weight (uniform between 0 and 1) to each edge e .
- ・Run Kruskal's MST algorithm until 2 connected components left.
- ・Return cut defined by connected components.

Probability of finding a mincut: $\approx \frac{1}{172}$. [no mincut edges in each connected component] 1 *V*2

Run algorithm many times and return best cut.

Remark 1. Finds global mincut in $\Theta(V^2E \log E)$ time — better than Ford–Fulkerson–based! Remark 2. With clever idea, improved to $\Theta(V^2 \log^3 V)$ time (still randomized).

e

Karger's global mincut algorithm

Smallest # of repetitions of Karger's algorithm to get correct answer with 99% probability?

- A. Θ(1)
- B. $\Theta(V)$
- C. $\Theta(V^2)$
- D. $\Theta(V^3)$
- E. None of the above.

RANDOMNESS

‣ *what it is and what it isn't* **‣** *Las Vegas and Monte Carlo*

‣ *Karger's algorithm*

‣ *more applications*

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

<https://algs4.cs.princeton.edu>

Uniform distribution in unit circle

Goal. Generate a random point in unit circle.

Rejection sampling.

・Generate a random point in 2-by-2 square centered at origin.

Remark. If *s* out of *t* samples in unit circle, $\frac{s}{t} \approx \frac{\pi}{4}$. *t* ≈ *π* 4

double x, y; do { $x = 2.0 * Math.random() - 1.0;$ $y = 2.0 * Math.random() - 1.0;$ } while $(x*x + y*y > 1.0)$; \leftarrow StdOut.println("(" + x + ", " + y + ")");

・If point is inside circle, use that point; otherwise, repeat.

41

random (*x, y*) *in square*

repeat until it's in the circle

used in Fraud Detection!

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

42

all n! *permutations equally likely*

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

43

all n! *permutations equally likely*

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

Challenge. Design in-place linear-time algorithm using StdRandom.uniformInt().

44

all n! *permutations equally likely*

Which of the following generate a uniformly random permutation of array a[]**?**

- A. StdRandom.shuffle(a);
- B. for (int $i = 0$; $i < a$ length; $i++)$ exch(a, i, StdRandom.uniformInt(a.length));
- C. for (int $i = a$. length -1 ; $i > 0$; $i -1$) $exch(a, i, StdRandom.uniformInt(i + 1));$
- D. A and C.
- E. All of the above.

Goal. Count to $\leq n$ with less memory: from $\log_2 n$ to $\Theta(\log \log n)$.

Why bother?

Database with 1 billion entries: $\log_2(10^9) \approx 30$ bits, but $\log_2 \log_2(10^9) \approx 5$ bits. Factor-6 improvement matters *a lot*.

Goal. Count to $\leq n$ with less memory: from $\log_2 n$ to $\Theta(\log \log n)$.

Why bother?

Database with 1 billion entries: $\log_2(10^9) \approx 30$ bits, but $\log_2 \log_2(10^9) \approx 5$ bits. Factor-6 improvement matters *a lot*.

Google Cloud HyperLogLog++ functions $|\Box \cdot|$

The HyperLogLog++ algorithm (HLL++) estimates cardinality from sketches.

HLL++ functions are approximate aggregate functions. Approximate aggregation typically requires less memory than exact aggregation functions, like COUNT (DISTINCT), but also introduces statistical error. This makes HLL++ functions appropriate for large data streams for which linear memory usage is impractical, as well as for data that is already approximate.

https://cloud.google.com/bigquery/docs/reference/standard-sql/hll_functions

Beyond this course

- ・Approximation algorithms [intractability: stay tuned!]
- ・Machine learning [randomized MW]
- ・Optimization [stochastic gradient descent]
- ・Cryptography [average-case hardness]
- ・Complexity theory [derandomization]
- ・Quantum computation [Shor's factoring algorithm]
- ・Networking [load balancing]
- ・Graphics [procedural generation]
- ・Mathematics [probabilistic method]
- Health sciences [randomized control trials]

ORF 309. Probability and Stochastic Systems COS 433. Cryptography

IBM Quantum System One

https://xkcd.com/221/

int getRandomNumber() { }
)

 return 4; // chosen by fair dice roll. // guaranteed to be random.

Credits

image

Quarter

6-sided dice

20-sided die

Lava lamps

 $Coin Toss$

IDQ Quantum Key Factory

SG100 protego.bytehoster.com

Las Vegas

Monte Carlo

Treasure chests

Random number generator

Lecture Slides © Copyright 2024 Marcel Dall'Agnol, Robert Sedgewick, and Kevin Wayne

