Algorithms

https://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

- what it is and what it isn't
- Las Vegas and Monte Carlo
- Karger's algorithm
- more applications

Last updated on 11/21/24 1:49PM

A brief recap: where we've already encountered randomness

Percolation. Monte Carlo simulation: open random blocked sites.

Randomized queues. Remove item chosen uniformly at random.

Test 2: open <mark>random</mark> sites until the sys
Test 7: open <mark>random</mark> sites with large n
Test 12: call open(), isOpen(), and num
in <mark>random</mark> order until just bef
Test 13: call open() and percolates() i
percolates
Test 14: call open() and isFull() in <mark>ra</mark>
Test 15: call all methods in <mark>random</mark> ord
Test 16: call all methods in <mark>random</mark> ord
(with inputs not prone to back
Test 20: call all methods in random ord
(these inputs are prone to bac

stem percolates

```
mberOfOpenSites()
fore system percolates
in <mark>random</mark> order until just before system
<mark>andom</mark> order until just before system percolates
der until just before system percolates
der until almost all sites are open
kwash)
```

```
der until all sites are open
```

```
ckwash)
```


Tests 1-8 make random intermixed calls to addFirst(), addLast(), removeFirst(), removeLast(), isEmpty(), and size(), and iterator(). Test 12: check iterator() after random calls to addFirst(), addLast(), Tests 1-6 make random intermixed calls to enqueue(), dequeue(), sample(), isEmpty(), size(), and iterator(). Test 16: check randomness of sample() by enqueueing n items, repeatedly calling sample(), and counting the frequency of each item

removeFirst(), and removeLast() with probabilities (p1, p2, p3, p4)

Test 17: check randomness of dequeue() by enqueueing n items, dequeueing n items, and seeing whether each of the n! permutations is equally likely Test 18: check randomness of iterator() by enqueueing n items, iterating over those n items, and seeing whether each of the n! permutations is equally likely

A brief recap: where we've already encountered randomness

Quicksort is a randomized algorithm.

Shuffling is needed for performance guarantee.

Hash tables.

$\geq p$		$\leq p$	p
	1		1
	1		i

 $\geq p$

RANDOMNESS

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

what it is and what it isn't

- Las Vegas and Monte Carlo
- Karger's algorithm
- more applications

Pseudorandomness

Computers can't generate randomness (without specialized hardware).

Pseudorandom functions.

Class Random

java.lang.Object java.util.Random

All Implemented Interfaces:

Serializable

Direct Known Subclasses:

SecureRandom, ThreadLocalRandom

Randomness: quiz 1

Which of these outcomes is most likely to occur in a sequence of 6 coin flips?

D. All of the above.

E. Both B and C.

The uniform distribution

Terminology and notation.

"C lands heads" and "D is even" are events with probabilities $\mathbb{P}[C \text{ lands heads}], \mathbb{P}[D \text{ rolls even}].$

Distribution: all outcome-probability pairs.

outcome	probability
heads	1/2
tails	1/2

distribution of unbiased coin

The uniform distribution

Terminology and notation.

"C lands heads" and "D is even" are events with probabilities $\mathbb{P}[C \text{ lands heads}], \mathbb{P}[D \text{ rolls even}].$

Distribution: all outcome-probability pairs.

[uniform distribution: all probabilities equal]

outcome	probability
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

distribution of 6-sided die

The uniform distribution

Independent coin flips.

 $\mathbb{P}[C_1 \text{ heads, } C_2 \text{ tails, } \dots C_k \text{ heads}] = \frac{1}{2} \times \frac{1}{2} \dots \times \frac{1}{2} = \frac{1}{2^k}. \leftarrow$

Terminology and notation.

"C lands heads" and "D is even" are **events** with probabilities $\mathbb{P}[C \text{ lands heads}], \mathbb{P}[D \text{ rolls even}].$

Distribution: all outcome-probability pairs. [uniform distribution: all probabilities equal]

Flip a coin 6 times and count how often it lands heads. Which count is most likely?

- **A.** 2
- **B.** 3
- **C.** 4
- **D**. All of the above.
- E. None of the above.

Binomial distribution

Experiment. Flip 5000 coins, count # of heads.

RANDOMNESS

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

- what it is and what it isn't
- Las Vegas and Monte Carlo
- Karger's algorithm
- more applications

Treasure hunt. Length-*n* array with 50% treasures, 50% duds.

Deterministic algorithms.

• scan the array left-to-right; return once treasure found.

 $\frac{n}{2} + 1$ accesses in worst case

Treasure hunt. Length-*n* array with 50% treasures, 50% duds.

Deterministic algorithms.

- scan the array left-to-right; return once treasure found.
- scan the array right-to-left; return once treasure found.

 $\frac{n}{2}$ + 1 accesses in worst case $-\frac{n}{2}+1$ accesses in worst case

Treasure hunt. Length-*n* array with 50% treasures, 50% duds.

Deterministic algorithms.

- scan the array left-to-right; return once treasure found.
- scan the array right-to-left; return once treasure found.
- look at even entries, then odd; return once treasure found. $-\frac{n}{2} + 1$ accesses in worst case

Treasure hunt. Length -n array with 50% treasures, 50% duds.

Proposition. For every deterministic algorithm, there is a 50%-treasure array where it makes $\frac{n}{2} + 1$ accesses.

Pf. Consider the sequence of n/2 accesses it makes when all are duds. The array with duds there and treasures elsewhere requires $\frac{n}{2} + 1$ accesses.

Treasure hunt. Length-*n* array with 50% treasures, 50% duds.

Randomized algorithms:

look at a[StdRandom.uniformInt(n)], return treasure (if found).

Treasure hunt. Length–*n* array with 50% treasures, 50% duds.

Randomized algorithms:

- look at two uniformly random entries, return 1st treasure found (if any).

Fails with probability
$$\frac{1}{2} \times \frac{1}{2}$$
.

Treasure hunt. Length -n array with 50% treasures, 50% duds.

Randomized algorithms:

- look at three uniformly random entries.

Treasure hunt. Length-*n* array with 50% treasures, 50% duds.

Randomized algorithms:

- look at three uniformly random entries, return 1st treasure found (if any). *3 flips land tails*
- look at *k* uniformly random entries, return 1st treasure found (if any).

reasure (if found). creasure found (if any). t treasure found (if any). t treasure found (if any). asure found (if any).

Suppose 1% of the array contains treasure and 99% contain duds. Then a[StdRandom.uniformInt(n)] finds a treasure with probability

- **A.** 1%
- **B.** 10%
- **C.** 50%
- **D.** 99%
- E. None of the above.

Rare treasures and biased coins

Treasure hunt. Length–*n* array with 1% treasures, 99% duds.

Randomized algorithm:

• look at k uniformly random entries, return treasure (if found).

Failure probability = $\mathbb{P}[k \text{ biased coin flips land tails}]$ $= (0.99)^k$.

Example. If we want $0.99^k < 1\%$, setting k = 459 suffices!

outcome	probability
heads	1/100
tails	99/100

distribution of 99%–1% biased coin

Monte Carlo algorithm.

- Running time is deterministic. [doesn't depend on coin flips]
- Not guaranteed to be correct.

Error reduction.

If $\mathbb{P}[A \text{ fails}] = p$ and want failure $\leq q$, repeat $k \geq \log_p q$ times.

Then, $\mathbb{P}[A \text{ fails } k \text{ times}] = p^k \leq q$. independence

Las Vegas algorithms

- Guaranteed to be correct.
- Running time depends on outcomes of random coin flips.
- Ex. Quicksort, quickselect.

Las Vegas vs. Monte Carlo

Treasure hunt. Length–*n* array with 50% treasures, 50% duds.

Randomized algorithm (Las Vegas):

• repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1st try with probability 1/2.

Las Vegas vs. Monte Carlo

Randomized algorithm (Las Vegas):

• repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1st try with probability 1/2. Returns in 2nd try with probability 1/4.

Las Vegas vs. Monte Carlo

Randomized algorithm (Las Vegas):

• repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1^{st} try with probability 1/2. Returns in 2nd try with probability 1/4. • •

Returns in k^{th} try with probability $1/2^k$.

Randomized algorithm (Las Vegas):

repeatedly look at uniformly random entry; return only when treasure found.

Returns in 1st try with probability 1/2. Returns in 2nd try with probability 1/4. • Returns in k^{th} try with probability $1/2^k$.

Expected # of array accesses: $1 \times \mathbb{P}[A \text{ makes } 1 \text{ access}] + 2 \times \mathbb{P}[A \text{ makes } 2 \text{ accesses}] + 3 \times \mathbb{P}[A \text{ makes } 3 \text{ accesses}] + \cdots$

same formula as quicksort (for compares)

At most how many array accesses made by Las Vegas treasure hunt?

- **A.** 1
- **B.** 2
- **C.** *n*/2
- **D.** *n*
- E. None of the above.

RANDOMNESS

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

- what it is and what it isn't
- Las Vegas and Monte Carlo
- Karger's algorithm
- more applications

Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Equivalent. Smallest min *st*-cut among all pairs (*s*, *t*) with antiparallel edges of capacity 1.

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Deterministic algorithms.

- Brute-force: iterate over all cuts, return smallest. $[2^{V-1} 1 \text{ cuts} \implies \text{exponential time!}]$

• Ford-Fulkerson-based: pick any s as source, try every t as target. $[V-1 \text{ runs of FF} \implies \Theta(VE^2) \text{ runtime.}]$

Global mincut problem

Goal. Find cut in undirected graph with fewest edges (for any source and sink).

Idea. Pick a random cut.

Global mincut problem

Uniformly? There may be 1 mincut but $2^{V-1} - 1$ total cuts — takes a *lot* of luck to find it.

Example.

Karger's global mincut algorithm

Algorithm.

- Assign a random weight (uniform between 0 and 1) to each edge *e*.
- Run Kruskal's MST algorithm until 2 connected components left.
- Return cut defined by connected components.

Probability of finding a mincut: $\approx \frac{1}{V^2}$. [no mincut edges in each connected component]

Run algorithm many times and return best cut.

Karger's global mincut algorithm

Algorithm.

- Assign a random weight (uniform between 0 and 1) to each edge e.
- Run Kruskal's MST algorithm until 2 connected components left.
- Return cut defined by connected components.

Probability of finding a mincut: $\approx \frac{1}{V^2}$. [no mincut edges in each connected component]

Run algorithm many times and return best cut.

Remark 1. Finds global mincut in $\Theta(V^2E \log E)$ time — better than Ford-Fulkerson-based! **Remark 2.** With clever idea, improved to $\Theta(V^2 \log^3 V)$ time (still randomized).

Smallest # of repetitions of Karger's algorithm to get correct answer with 99% probability?

- **Α.** Θ(1)
- **B.** $\Theta(V)$
- C. $\Theta(V^2)$
- **D.** $\Theta(V^3)$
- E. None of the above.

RANDOMNESS

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

what it is and what it isn't Las Vegas and Monte Carlo

Karger's algorithm

more applications

Uniform distribution in unit circle

Goal. Generate a random point in unit circle.

Rejection sampling. 🖌

- used in Fraud Detection!
- Generate a random point in 2-by-2 square centered at origin.
- If point is inside circle, use that point; otherwise, repeat.

double x, y; do { x = 2.0 * Math.random() - 1.0; y = 2.0 * Math.random() - 1.0; } while (x*x + y*y > 1.0); StdOut.println("(" + x + ", " + y + ")");

Remark. If *s* out of *t* samples in unit circle, $\frac{s}{t} \approx \frac{\pi}{4}$.

random (x, y) in square

repeat until it's in the circle

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

all n! permutations equally likely

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

all n! permutations equally likely

Interview question: shuffle an array

Goal. Rearrange array so that result is a uniformly random permutation.

Challenge. Design in-place linear-time algorithm using StdRandom.uniformInt().

all n! permutations equally likely

Which of the following generate a uniformly random permutation of array a[]?

- A. StdRandom.shuffle(a);
- B. for (int i = 0; i < a.length; i++) exch(a, i, StdRandom.uniformInt(a.length));
- C. for (int i = a.length 1; i > 0; i -) exch(a, i, StdRandom.uniformInt(i + 1));
- D. A and C.
- E. All of the above.

Goal. Count to $\leq n$ with less memory: from $\log_2 n$ to $\Theta(\log \log n)$.

Why bother?

Database with 1 billion entries: $\log_2(10^9) \approx 30$ bits, but $\log_2 \log_2(10^9) \approx 5$ bits. Factor-6 improvement matters *a lot*.

		Explore

Goal. Count to $\leq n$ with less memory: from $\log_2 n$ to $\Theta(\log \log n)$.

Why bother?

Database with 1 billion entries: $\log_2(10^9) \approx 30$ bits, but $\log_2 \log_2(10^9) \approx 5$ bits. Factor-6 improvement matters *a lot*.

Google Cloud HyperLogLog++ functions

The HyperLogLog++ algorithm (HLL++) estimates cardinality from sketches.

HLL++ functions are approximate aggregate functions. Approximate aggregation typically requires less memory than exact aggregation functions, like **COUNT(DISTINCT)**, but also introduces statistical error. This makes HLL++ functions appropriate for large data streams for which linear memory usage is impractical, as well as for data that is already approximate.

https://cloud.google.com/bigquery/docs/reference/standard-sql/hll_functions

Beyond this course

- Approximation algorithms [intractability: stay tuned!]
- Machine learning [randomized MW]
- Optimization [stochastic gradient descent]
- Cryptography [average-case hardness]
- Complexity theory [derandomization]
- Quantum computation [Shor's factoring algorithm]
- Networking [load balancing]
- Graphics [procedural generation]
- Mathematics [probabilistic method]
- Health sciences [randomized control trials]

ORF 309. Probability and Stochastic Systems COS 433. Cryptography

IBM Quantum System One

int getRandomNumber()

https://xkcd.com/221/

return 4; // chosen by fair dice roll. // guaranteed to be random.

Credits

image

Quarter

6-sided dice

20-sided die

Lava lamps

Coin Toss

IDQ Quantum Key Factory

SG100

Las Vegas

Monte Carlo

Treasure chests

Random number generator

Lecture Slides © Copyright 2024 Marcel Dall'Agnol, Robert Sedgewick, and Kevin Wayne

<u>p</u>

source	license		
Adobe Stock	Education License		
Adobe Stock	Education License		
Adobe Stock	Education License		
Fast Company			
<u>clipground.com</u>	<u>CC BY 4.0</u>		
idquantique.com			
rotego.bytehost16.com			
Adobe Stock	Education License		
Adobe Stock	Education License		
Adobe Stock	Education License		
<u>XKCD</u>	<u>CC BY-NC 2.5</u>		