
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/18/24 10:28  PM

2.2 MERGESORT

‣mergesort

‣ sorting complexity

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in our computational infrastructure.  
 

 
Mergesort. [this lecture]
 
 
 
 
 
 
Quicksort. [next lecture]

2

…

…

2.2 MERGESORT

‣mergesort

‣ sorting complexity

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Mergesort overview

Basic plan.

・Divide array into two halves.

・Recursively sort left half.

・Recursively sort right half.

・Merge two sorted halves.

4

input M E R G E S O R T E X A M P L E

sort left half E E G M O R R S T E X A M P L E

sort right half E E G M O R R S A E E L M P T X

merge results A E E E E G L M M O P R R S T X

Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],  
replace with sorted subarray a[lo] to a[hi].

5

E E G M R A C E R T

lo mid mid+1 hi

sorted sorted

a[]

Merging: Java implementation

6

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++) {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }

}

copy

merge

i jlo himid

A G L O R H I M S Taux[]

k

A G H I La[] M

Mergesort quiz 1

How many calls does merge() make to less() when merging two sorted subarrays,  
each of length n / 2, into a sorted array of length n ?

A. ~ ¼ n to ~ ½ n

B. ~ ½ n

C. ~ ½ n to ~ n

D. ~ n

7

A B C D E F G H

best-case input (n/2 compares)

A B C H D E F G

worst-case input (n - 1 compares)

a0 a1 a2 a3 b0 b1 b2 b3

merging two sorted arrays, each of length n/2

Mergesort: Java implementation

8

lo hi

10 11 12 13 14 15 16 17 18 19

public class Merge {
 private static void merge(...) {
 /* as before */
 }

 private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, aux, lo, mid);
 sort(a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
 }

 public static void sort(Comparable[] a) {
 Comparable[] aux = new Comparable[a.length];
 sort(a, aux, 0, a.length - 1);
 }
}

mid

avoid allocating arrays
within recursive function calls

Mergesort: trace

9

result after recursive call

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Mergesort quiz 2

Which subarray lengths will arise when mergesorting an array of length 12?

A. { 1, 2, 3, 4, 6, 8, 12 }

B. { 1, 2, 3, 6, 12 }

C. { 1, 2, 4, 8, 12 }

D. { 1, 3, 6, 9, 12 }

10

12

6 6

2 12 1 2 12 1

3 3 3 3

1 1 1 1 1 1 1 1

Mergesort: animation

11

https://www.toptal.com/developers/sorting-algorithms/merge-sort

50 random items

in order
current subarray

algorithm position

not in order

https://www.toptal.com/developers/sorting-algorithms/merge-sort

Mergesort: animation

12

50 reverse-sorted items

in order
current subarray

algorithm position

not in order
https://www.toptal.com/developers/sorting-algorithms/merge-sort

https://www.toptal.com/developers/sorting-algorithms/merge-sort

Mergesort: empirical analysis

Running time estimates:

・Laptop executes 108 compares/second.

・Supercomputer executes 1012 compares/second.
 
 
 
 
 
 
 
 
 
 
 
 
Bottom line. Good algorithms are better than supercomputers.

13

insertion sort (n2) mergesort (n log n)

computer thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min

super instant 1 second 1 week instant instant instant

Mergesort analysis: number of compares

Proposition. Mergesort uses ≤ n log2 n compares to sort any array of length n.
 
Pf sketch. The number of compares C (n) to mergesort any array of length n

satisfies the recurrence:  

 C (n) ≤ C (⎡n / 2⎤) + C (⎣n / 2⎦) + n − 1 for n > 1, with C (1) = 0.
 
 
 
 
 
For simplicity. Assume n is a power of 2 and solve this recurrence:  
 
 D (n) = 2 D (n / 2) + n, for n > 1, with D (1) = 0.

14

sort
left half

sort
right half

merge

proposition holds even when n is not a power of 2
(but analysis cleaner in this case)

Divide-and-conquer recurrence

Proposition. If D (n) satisfies D (n) = 2 D (n / 2) + n for n > 1, with D (1) = 0, then D (n) = n log2 n.
 
Pf by picture. [assuming n is a power of 2] 

15

log2 n

D (n) = n log2 n

n = n

2 (n / 2) = n

8 (n / 8) = n

⋮

D (n)

4 (n / 4) = n

D (n / 2) D (n / 2)

D (n / 8) D (n / 8)D (n / 8) D (n / 8) D (n / 8) D (n / 8)D (n / 8) D (n / 8)

D (n / 4) D (n / 4) D (n / 4) D (n / 4)

⋮

Q: how about D(n) = 3 D(n / 3) + 5n ?

A: D(n) = 5 n log3 n

Mergesort analysis: number of array accesses

Proposition. Mergesort makes Θ(n log n) array accesses.
 
Pf sketch. The number of array accesses A(n) satisfies the recurrence:  

 A(n) = A(⎡n / 2⎤) + A(⎣n / 2⎦) + Θ(n) for n > 1, with A(1) = 0.
 
 
Key point. Any algorithm with the following structure takes Θ(n log n) time:
 
 
 
 
 
 
 
Famous examples. FFT, closest pair, hidden-line removal, Kendall-tau distance, …

16

public static void f(int n) {
 if (n == 0) return;
 f(n/2);
 f(n/2);
 linear(n);
}

solve two problems of half the size

do Θ(n) work

Mergesort analysis: memory

Proposition. Mergesort uses Θ(n) extra space.
Pf. The length of the aux[] array is n, to handle the last merge.
 
 
 
 
 
 
 
 
 
Def. A sorting algorithm is in-place if it uses Θ(log n) extra space (or less).
Ex. Insertion sort and selection sort.
 
Challenge 1 (not hard). Get by with an aux[] array of length ~ ½ n (instead of n).
Challenge 2 (very hard). In-place merge. [Kronrod 1969]

17

 A C D G H I M N U V B E F J O P Q R S T

 A B C D E F G H I J M N O P Q R S T U V

two sorted subarrays

merged result

essentially negligible

Mergesort quiz 3

Consider the following modified version of mergesort.
How much total memory is allocated over all recursive calls?

A. Θ(n)

B. Θ(n log n)

C. Θ(n2)

D. Θ(2n)

18

private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 int n = hi - lo + 1;
 Comparable[] aux = new Comparable[n];
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, aux, lo, mid, hi);
}

The amount of memory allocated satisfies the recurrence:  

 M (n) = M (⎡n / 2⎤) + M (⎣n / 2⎦) + Θ(n) for n > 1, with M (1) = 0.

Mergesort: practical improvement

Use insertion sort for small subarrays.

・Mergesort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for ≈ 10 items.

19

private static void sort(...) {

 if (hi <= lo + CUTOFF - 1) {
 Insertion.sort(a, lo, hi);
 return;
 }

 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
}

makes mergesort
about 20% faster

Mergesort quiz 4

Is our implementation of mergesort stable?

A. Yes.

B. No, but it can be easily modified to be stable.

C. No, mergesort is inherently unstable.

D. I don’t remember what stability means.

20

a sorting algorithm is stable if it
preserves the relative order of equal keys

A3 A1 A2 B C

C A1 B A2 A3input

sorted

not stable

0 1 2 3 4

A1 A2 A3 B D
5 6 7 8 9 10

A4 A5 C E F G

Mergesort is stable as merge() takes
from left subarray if keys are equal.

Sorting summary

21

in-place? stable? best average worst remarks

selection ✔ ½ n2 ½ n2 ½ n2 n exchanges

insertion ✔ ✔ n ¼ n2 ½ n2 use for small n
or partially sorted

merge ✔ ½ n log2 n n log2 n n log2 n Θ(n log n) guarantee; stable

? ✔ ✔ n n log2 n n log2 n holy sorting grail

number of compares to sort an array of n elements

Partially sorted arrays

Version 1. Given an array of n integers where the first entries are already in sorted order,
sort the entire array in time.  
 
 

Algorithm.
Run 100 iterations of insertion sort.

n − 100

Θ(n)

22

sorted

Partially sorted arrays

Version 2. Given an array of n integers where the first entries are already in sorted order,
sort the entire array in time.  
 
 

Algorithm.
Sort the last entries.
Marge the first sorted entries and the last sorted entries.

n − n

Θ(n)

n

n − n n

23

 timeΘ(n log n)

 timeΘ(n)

sorted

2.2 MERGESORT

‣mergesort

‣ sorting complexity

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.

25

term description example (X = sorting)

model of computation
specifies memory

and primitive operations
comparison tree

cost model primitive operation counts # compares

upper bound
cost guarantee provided by

some algorithm for a problem
~ n log2 n

lower bound
proven limit on cost guarantee

for all algorithms for a problem
?

optimal algorithm
algorithm with best possible
cost guarantee for a problem

?

can gain knowledge about input
only through pairwise compares

(e.g., Java’s Comparable framework)

from mergesort

lower bound ~ upper bound

Comparison tree (for 3 distinct keys a, b, and c)

26

b < c

yes no

a < c

yes no

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

height of pruned comparison tree =
worst-case number of compares

a < b

yes no

code between compares
(e.g., sequence of exchanges)

one (and only one) reachable leaf corresponds to each each possible ordering

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make at least 
log2(n !) ~ n log2 n compares.
 
Pf.

・Assume array consists of n distinct values a1 through an.

・n ! different orderings ⇒ n ! reachable leaves.
・Worst-case number of compares = height h of pruned comparison tree.
・Binary tree of height h has ≤ 2h leaves.

27

h

≤ 2h leaves

n! reachable leaves

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make at least 
log2(n !) ~ n log2 n compares.

Pf.

・Assume array consists of n distinct values a1 through an.

・n ! different orderings ⇒ n ! reachable leaves.
・Worst-case number of compares = height h of pruned comparison tree.
・Binary tree of height h has ≤ 2h leaves.

28

 2h ≥ # reachable leaves = n !

⇒ h ≥ log2(n !)

 ~ n log2 n

Stirling’s formula

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First goal of algorithm design: optimal algorithms.

29

term description example (X = sorting)

model of computation
specifies memory

and primitive operations
comparison tree

cost model primitive operation counts # compares

upper bound
cost guarantee provided by

some algorithm for a problem
~ n log2 n

lower bound
proven limit on cost guarantee

for all algorithms for a problem

optimal algorithm
algorithm with best possible
cost guarantee for a problem

~ n log2 n

mergesort

Computational complexity results in context

Compares? Mergesort is optimal with respect to number compares.
Space? Mergesort is not optimal with respect to space usage.
 
 
 
 
 
 
 
 
 
 
 
Lesson. Use theory as a guide.
Ex. Design sorting algorithm that makes ~ ½ n log2 n compares in worst case?
Ex. Design sorting algorithm that makes Θ(n log n) compares and uses Θ(1) extra space.

30

Sorting with few values

Version 1. Is it possible to sort an array of n integers ranging from 0 to n − 1 in Θ(n) time? 
 

Yes!
Count the number of occurrences of each integer.

31

int[] count = new int[n];
for (int i = 0; i < n; i++)
 count[a[i]]++;

why is this not violating
the sorting lower bound?

this is counting sort!

Sorting with few values

Version 2. Is it possible to sort an array of n elements with integer keys ranging from 0 to n − 1 in Θ(n) time? 
 

Yes!
count is no longer an integer array; instead, it is an array of linked lists.  
Specifically, count[i] points to a linked list that contains all elements with key i.

32

Sorting with few values

Version 3. Is it possible to sort an array of n integers ranging from 0 to n2 − 1 in Θ(n) time? 

Hint 1. Express each integer as an + b, where 0 ≤ a, b ≤ n − 1.

Hint 2. The algorithm from Version 2 can be made stable  
 (e.g., insert new elements at the end of the linked list).

Yes!
Write integer i as .
Sort by b’s and then sort by a’s using the (stable) algorithm from Version 2.

(ai, bi)

33

this the idea behind
Radix sort!

Commercial break (sponsored by)

Q. Why doesn’t this Skittles sorter violate the sorting lower bound?

34
https://www.youtube.com/watch?v=tSEHDBSynVo

http://www.apple.com

Complexity results in context (continued)

Lower bound may not hold if the algorithm can exploit:  

・The initial order of the input array.  
Ex: insertion sort makes only Θ(n) compares on partially sorted arrays.  

・The distribution of key values.  
Ex: 3-way quicksort makes only Θ(n) compares on arrays 
with a small number of distinct keys. [next lecture]  

・The representation of the keys.  
Ex: radix sorts do not make any key compares;  
they access the data via individual characters/digits.

35

Asymptotic notations

36

notation provides example shorthand for

tilde
(~)

leading
term ~ ½ n2

½ n2

½ n2 + 3 n + 22
½ n2 + n log2 n

big Theta
(Θ)

order of
growth

Θ(n2)
½ n2

7 n2 + n½

 5 n2 − 3 n

big O
(O)

upper
bound O(n2)

10 n2

22 n
log2 n

big Omega
(Ω)

lower
bound Ω(n2)

½ n2

n3 + 3 n
2n

Θ(n 2) or smaller

Θ(n 2) or larger

ignore
lower-order terms

also ignore
leading coefficient

Warning: many programmers

misuse O to me an Θ.

exact
run time

O-notation

Ω-notation

Mergesort quiz 5

Which of the following correctly describes the function f(n) = 10 log n + 2 n log n + 0.1 n ?

A. Θ(n log n)

B. O(2 n)

C. O(n log n)

D. Ω(n)

E. All of the above.

37

Mergesort quiz 6

Which of the following statements is implied by the sorting lower bound?

A. Any sorting algorithm runs in time at least O(n log n) on any large enough input.

B. Any compare-based sorting algorithm makes Θ(n log n) compares or uses Θ(n) memory.

C. In the worst case, any compare-based sorting algorithm makes O(n log n) compares.

D. In the worst case, any compare-based sorting algorithm makes Ω(n log n) compares.

E. None of the above.

38

Sorting a linked list

Problem. Given a singly linked list, rearrange its nodes in sorter order.
Application. Sort list of inodes to garbage collect in Linux kernel.
 
Version 0. Θ(n log n) time, Θ(n) extra space.
Version 1. Θ(n log n) time, Θ(log n) extra space.
Version 2. Θ(n log n) time, Θ(1) extra space.

first

6♣ 2♣ 7♣ 3♣5♣ 4♣ null

39

first

3♣ 4♣ 5♣ 6♣2♣ 7♣ null

input

sorted

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

40

image/video source license

Jon von Neumann IAS / Alan Richards

Tim Peters unknown

Theory vs. Practice Ela Sjolie

Skittles Sorting Machine Rolf R. Bakke

Fast Skittles Sorting Machine Kazumichi Moriyama

Impossible Stamp Adobe Stock education license

Divide-and-Conquer wallpapercrafter.com

Mergesort Instructions IDEA CC BY-NC-SA 4.0

https://www.chronicle.com/article/early-computings-deal-with-the-devil
https://elasjoliedotcom.files.wordpress.com/2011/03/theory_practice_tree.jpg
https://www.youtube.com/watch?v=tSEHDBSynVo
https://www.youtube.com/watch?v=-_JdQZTQuTI#ws
https://stock.adobe.com/images/impossible-stamp-set-impossible-square-grunge-sign/406633267
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://wallpapercrafter.com/1898086-divide-and-conquer-conquer--divide-blocks-scrabble.html

Merging demo (Transylvanian–Saxon folk dance)

41

https://www.youtube.com/watch?v=XaqR3G_NVoo

https://www.youtube.com/watch?v=XaqR3G_NVoo

