
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/6/24 1:53  PM

1.3 STACKS AND QUEUES

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

‣ iterators
https://algs4.cs.princeton.edu

see next lecture and precept

https://algs4.cs.princeton.edu

Stacks and queues

Fundamental data types.

・Value: collection of objects.

・Operations: add, remove, iterate, size, test if empty.

・Intent is clear when we add.

・Which item do we remove?
 
 
 
 
 
 
 
 
 
Stack. Remove the item most recently added.
Queue. Remove the item least recently added.

add remove

queue

F E D C B A

2

LIFO = “last in first out”

FIFO = “first in first out”

removeadd

stack

A

B

C

D

E

F

Programming assignment 2

Deque. Remove either the most recently or the least recently added item.
Randomized queue. Remove a random item.
 
 
 
 
 
 
 
 
 
 
Your job.

・Identify a data structure that meets the performance requirements.

・Implement it from scratch.

3

Data type design: API, client, and implementation

Separate client and implementation via API.  

 
 
 
 
 
 
 
 
 
Benefits.

・Design: develop and maintain reusable code.

・Performance: substitute faster implementations.
 
Ex. Stack, queue, priority queue, symbol table, set, union–find, …

4

 API: operations that characterize the behavior of a data type.

 Client: code that uses a data type through its API.

 Implementation: code that implements the API operations.

Client API Implementation

1.3 STACKS AND QUEUES

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

‣ iteratorsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stack API

Warmup API. Stack of strings data type.
 
 
 
 
 
 
 
 
 
 
 
 
Performance goals. Every operation takes Θ(1) time; stack with n items uses Θ(n) memory.  

Warmup client. Reverse a stream of strings from standard input.
6

poppush

A

B

C

D

E

F

 public class StackOfStrings

StackOfStrings() create an empty stack

void push(String item) add a new string to stack

String pop() remove and return the string
most recently added

boolean isEmpty() is the stack empty?

int size() number of strings on the stack

Function-call stack demo

7

public static void main(String[] args) {
 double a = Double.parseDouble(args[0]);
 double b = Double.parseDouble(args[1]);
 double c = hypotenuse(a, b);
}}

main()

variable a b c

value 3.0 4.0

public static double hypotenuse(double a, double b) {
 return Math.sqrt(square(a) + square(b));
}}

hypotenuse(3.0, 4.0)

variable a b

value 3.0 4.0

public static double square(double a) {
 return a*a;
}}

square(3.0)

variable a

value 3.0

function-call stack

Stacks and queues: quiz 1

How to implement efficiently a stack with a singly linked list?

 
 

 

C. Both A and B.  

D. Neither A nor B.

8

today dream a have I null

most recently added

I have a dream today null

least recently added

B.

A.

Stack: linked-list implementation

・Maintain pointer first to first node in a singly linked list.

・Push new item before first.

・Pop item from first.

9

first

today dream a have I null

most recently added

!

dream
a

have
first

I

null

singly linked list

Stack pop: linked-list implementation

10

save item to return

String item = first.item;

delete first node

first = first.next;

return saved item

return item;

garbage collector reclaims memory
when no remaining references

dream
a

have

first

I

null

nested class

private class Node {
 private String item;
 private Node next;
}

Stack push: linked-list implementation

11

save a link to the list

Node oldFirst = first;

create a new node at the front

first = new Node();

initialize the instance variables in the new Node

first.item = "dream";
first.next = oldFirst;

dream
a

have
first

I

null

oldFirst

a
have

I

null

oldFirst

null

null
first

a
havefirst

I

null

oldFirst

nested class

private class Node {
 private String item;
 private Node next;
}

public class LinkedStackOfStrings {
 private Node first = null;

 private class Node {
 private String item;
 private Node next;
 }

 public boolean isEmpty() {
 return first == null;
 }

 public void push(String item) {
 Node oldFirst = first;
 first = new Node();
 first.item = item;
 first.next = oldFirst;
 }

 public String pop() {
 String item = first.item;
 first = first.next;
 return item;
 }
}

Stack: linked-list implementation

12

private nested class
(access modifiers for instance variables of such a class don’t matter)

no Node constructor explicitly defined ⇒
Java supplies default no-argument constructor

Stack: linked-list implementation performance

Proposition. Every operation takes Θ(1) time.
 
 
Proposition. A LinkedStackOfStrings with n items has n Node objects and uses ~ 40 n bytes.
 
 
 
 
 
 
 
 
 
Remark. This counts the memory for the stack itself, including the string references.  
 [but not the memory for the string objects, which the client allocates]

13

8 bytes (reference to String)

8 bytes (reference to Node)

16 bytes (object overhead)

40 bytes per stack Node

public class Node
{
 String item;
 Node next;
...
}

node object (inner class) 40 bytes

references

object
overhead

extra
overhead

item

next

8 bytes (non-static nested class extra overhead)

nested class

private class Node {
 private String item;
 private Node next;
}

Stacks and queues: quiz 2

How to implement efficiently a fixed-capacity stack with an array?
 

 
 
 

C. Both A and B.  

D. Neither A nor B.

14

! today dream a have I null null null null

0 1 2 3 4 5 6 7 8 9

most recently added

I have a dream today ! null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

B.

A.

Fixed-capacity stack: array implementation

・Use array s[] to store n items on stack.

・Push: add new item at s[n].

・Pop: remove item from s[n-1].
 
 
 
 
 
 
 
 
 
 
Defect. Stack overflows when n exceeds capacity. [stay tuned]

I have a dream today ! null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

15

s[]

n

capacity = 10

I haveI havenull null

Fixed-capacity stack: array implementation

16

public class FixedCapacityStackOfStrings {
 private String[] s;
 private int n = 0;

 public FixedCapacityStackOfStrings(int capacity) {
 s = new String[capacity];
 }

 public boolean isEmpty() {
 return n == 0;
 }

 public void push(String item) {
 s[n++] = item;
 }

 public String pop() {
 return s[--n];
 }

}

pre-decrement operator:
decrement n;
then use as index into array

post-increment operator:
use as index into array;
then increment n

a cheat
(stay tuned)

Stack considerations

Underflow. Throw exception if pop() called when stack is empty.
Overflow. Use “resizing array” for array implementation. [next section]
Null items. We allow null items to be added.
 
Loitering. Holding an object reference when it is no longer needed.

17

no loitering

public String pop() {
 String item = s[n-1];
 s[n-1] = null;
 n--;
 return item;
}

loitering

public String pop() {
 return s[--n];
}

I have a dream today ! null null null null

0 1 2 3 4 5 6 7 8 9

n

1.3 STACKS AND QUEUES

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

‣ iteratorsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Stack: resizing-array implementation

Problem. Requiring client to provide capacity does not implement API!
Q. How to grow and shrink array?
 
Naive approach.

・Push: increase length of array s[] by 1.

・Pop: decrease length of array s[] by 1.
 
Too expensive.

・Need to copy all items to a new array, for each push/pop.

・Array accesses to add item k : 1 + 2(k − 1)

・Array accesses to add first n items: n + (0 + 2 + 4 + 6 + … + 2(n − 1))
 
 
 
 
Challenge. Ensure that array resizing happens infrequently.

19

to copy k−1 elements from old array to new array
(ignoring cost to create new array)

infeasible
for large n

~ n2.

add items
to array

array resizing to lengths
1, 2, 3, 4, … , n

Stack: resizing-array implementation

Q. How to grow array?
A. If array is full, create a new array of twice the length, and copy items.

20

public class ResizingArrayStackOfStrings {
 private String[] s;
 private int n = 0;

 public ResizingArrayStackOfStrings() {
 s = new String[1];
 }

 public void push(String item) {
 if (n == s.length) resize(2 * s.length);
 s[n++] = item;
 }

 private void resize(int capacity) {
 String[] copy = new String[capacity];
 for (int i = 0; i < n; i++)
 copy[i] = s[i];
 s = copy;
 }

}

“repeated doubling”

double size of array if full

helper method does the resizing

Stack: resizing-array implementation

Q. How to grow array?
A. If array is full, create a new array of twice the length, and copy items.
 
Cost is reasonable.

・Still need to copy all items to a new array but, now, only infrequently.

・Array accesses to add first n = 2 i items: n + (2 + 4 + 8 + 16 + … + n)

Q. Can I use a growth factor other than α = 2 ?
A. Yes.

・Java ArrayList and C++ STL vector use α = 1.5.

・Python list uses α = 1.125.

・…
21

“repeated doubling”

feasible for large n

~ 3 n .

array resizing to lengths
2, 4, 8, 16, …, n

add items
to array

Stack: resizing-array implementation

Q. How to shrink array?
 
First try.

・Push: double length of array s[] when array is full.

・Pop: halve length of array s[] when array is one-half full.
 
Too expensive for some sequences of operations.

・Consider alternating sequence of push and pop operations, starting when array is full.

・Each operation takes Θ(n) time.

22

push("today") I have a dream today null null null

I have a dreamfull

I have a dreampop()

I have a dream ! null null nullpush("!")

Stack: resizing-array implementation

Q. How to shrink array?

Efficient solution.

・Push: double length of array s[] when array is full.

・Pop: halve length of array s[] when array is one-quarter full.

Proposition. Starting from an empty stack, any sequence of m push/pop operations takes Θ(m) time.
Intuition. After array resizes to n, at least Θ(n) push/pop operations before next array resizing.

23

 public String pop() {
 String item = s[--n];
 s[n] = null;
 if (n > 0 && n == s.length/4)
 resize(s.length/2);
 return item;
 }

so, on average, each
operation takes Θ(1) time

Amortized analysis

Worst-case analysis. Worst-case running time for an individual operation.
 
Amortized analysis. Worst-case running time for a sequence of operations.

・Amortized cost per operation = total cost / # operations.

・Provides more realistic analysis when some operations are expensive but rare.  
Enough for most applications, but not all (e.g., real time, pacemakers, nuclear reactors).

24

worst amortized

construct 1 1

push n 1

pop n 1

size 1 1

order of growth of running time for
resizing-array stack with n items

Bob Tarjan
(1986 Turing award)

amortized running time per operation is Θ(1)
worst case running time for any sequence of n operations is Θ(1) n = Θ(n).

⟺
⋅

average running time per operation is Θ(1).
however, the worst case per operation can be Θ(n).

Stack resizing-array: memory usage

Proposition. A ResizingArrayStackOfStrings with n items use between ~ 8n and ~ 32n bytes of memory.

・Always between 25% and 100% full.

・ ~ 8n when full. [array length = n]

・ ~ 32n when one-quarter full. [array length = 4n]
 
 
 
 
 
 
 
 
 
Remark. This counts the memory for the stack itself, including the string references.  
 [but not the memory for the string objects, which the client allocates]

25

public class ResizingArrayStackOfStrings {

 private String[] s;
 private int n = 0;

 ⋮

}

8 bytes × array length

Stack implementations: resizing array vs. linked list

Tradeoffs. Can implement a stack with either resizing array or linked list. Which is better? 

Linked-list implementation.

・Stronger performance guarantee.

・More memory.  

Resizing-array implementation.

・Weaker performance guarantee.

・Less memory.

・Better use of cache.

26

I have a dream null null null null

n = 4

a[]

dream
a

have

first

I

null

accessing adjacent memory locations (e.g., in an array)
is much faster than accessing nonadjacent

memory locations (e.g., in a linked list)

1.3 STACKS AND QUEUES

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

‣ iteratorsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Queue of strings API

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Performance goals. Every operation takes Θ(1) time; queue with n items uses Θ(n) memory.

28

 public class QueueOfStrings

QueueOfStrings() create an empty queue

void enqueue(String item) add a new string to queue

String dequeue() remove and return the string least recently added

boolean isEmpty() is the queue empty?

int size() number of strings on the queue

enqueue dequeueF E D C B AGH

Stacks and queues: quiz 3

How to implement efficiently a queue with a singly linked list?
 

 
 
 

C. Both A and B.  

D. Neither A nor B.
29

A.
least recently added

have a dream todayI null

most recently added

most recently added

dream a have Itoday null

B.
least recently added

Queue: linked-list implementation

・Maintain one pointer first to first node in a singly linked list.

・Maintain another pointer last to last node.

・Dequeue from first.

・Enqueue after last.

null!have a dream today

least recently added

I

most recently added

30

first last

null

most recently added

last

Queue dequeue: linked-list implementation

Remark. Code is identical to pop().

31

save item to return

String item = first.item;

delete first node

first = first.next;

return saved item

return item;

I
have

a
first

dream

null

I
have

a

first

dream

null

last

singly linked list

last

nested class

private class Node {
 private String item;
 private Node next;
}

Queue enqueue: linked-list implementation

32

save a link to the list

Node oldLast = last;

create a new node at the end

last = new Node();
last.item = "dream";

link together

oldLast.next = last;

I
havefirst

a

null

lastoldLast

I
have

a

null

oldLast

dream

null

first

last

I
have

a
first

dream

null

last
oldLast

nested class

private class Node {
 private String item;
 private Node next;
}

public class LinkedQueueOfStrings {
 private Node first, last;

 private class Node {
 /* same as in LinkedStackOfStrings */
 }

 public boolean isEmpty() {
 return first == null;
 }

 public void enqueue(String item) {
 Node oldLast = last;
 last = new Node();
 last.item = item;
 last.next = null;
 if (isEmpty()) first = last;
 else oldLast.next = last;
 }

 public String dequeue() {
 String item = first.item;
 first = first.next;
 if (isEmpty()) last = null;
 return item;
 }
}

 Queue: linked-list implementation

33

corner case: add to an empty queue
(don’t forget to update first)

corner case: remove down to an empty queue
(avoid loitering)

Queue: resizing-array implementation

Goal. Implement a queue using a resizing array so that, starting from an empty queue,  
any sequence of m operations takes Θ(m) time.

34

I have a dream today ! null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

n

q[]

! today dream a have I null null null null

0 1 2 3 4 5 6 7 8 9

most recently added

n

q[]

dequeue()
is inefficient

enqueue()
is inefficient

Queue: resizing-array implementation

Goal. Implement a queue using a resizing array so that, starting from an empty queue,  
any sequence of m operations takes Θ(m) time.

35

least recently
added

most recently
added

q[] null null null null null null

0 1 2 3 4 5 6 7 8 9

I have a dream

1.3 STACKS AND QUEUES

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

‣ iteratorsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfApples, StackOfOranges, …
 
Solution in Java: generics.
Guiding principle: prefer compile-time errors to run-time errors.

 Stack<Apple> stack = new Stack<Apple>();
 Apple apple = new Apple();
 stack.push(apple);
 Orange orange = new Orange();
 stack.push(orange);
 ...

37

type parameter
(use to specify type and call constructor)

compile-time error

public class LinkedStackOfStrings {
 private Node first = null;

 private class Node {
 String item;
 Node next;
 }

 public boolean isEmpty() {
 return first == null;
 }

 public void push(String item) {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public String pop() {
 String item = first.item;
 first = first.next;
 return item;
 }
}

public class LinkedStackOfStrings {
 private Node first = null;

 private class Node {
 String item;
 Node next;
 }

 public boolean isEmpty() {
 return first == null;
 }

 public void push(String item) {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public String pop() {
 String item = first.item;
 first = first.next;
 return item;
 }
}

Generic stack: linked-list implementation

38

stack of strings (linked list)

public class Stack<Item> {
 private Node first = null;

 private class Node {
 Item item;
 Node next;
 }

 public boolean isEmpty() {
 return first == null;
 }

 public void push(Item item) {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public Item pop() {
 Item item = first.item;
 first = first.next;
 return item;
 }
}

generic type name

generic stack (linked list)

public class FixedCapacityStackOfStrings {
 private String[] s;
 private int n = 0;

 public Fixed...OfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return n == 0; }

 public void push(String item)
 { s[n++] = item; }

 public String pop()
 { return s[--n]; }

}

The way it should be.

public class FixedCapacityStackOfStrings {
 private String[] s;
 private int n = 0;

 public Fixed...OfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return n == 0; }

 public void push(String item)
 { s[n++] = item; }

 public String pop()
 { return s[--n]; }

}

Generic stack: array implementation

generic stack (fixed-length array) ???

public class FixedCapacityStack<Item> {
 private Item[] s;
 private int n = 0;

 public FixedCapacityStack(int capacity)
 { s = new Item[capacity]; }

 public boolean isEmpty()
 { return n == 0; }

 public void push(Item item)
 { s[n++] = item; }

 public Item pop()
 { return s[--n]; }

}

39

@#$*! generic array creation
not allowed in Java

stack of strings (fixed-length array)

Generic stack: array implementation

The way it should be.

40

public class FixedCapacityStack<Item> {
 private Item[] s;
 private int n = 0;

 public FixedCapacityStack(int capacity)
 { s = (Item[]) new Object[capacity]; }

 public boolean isEmpty()
 { return n == 0; }

 public void push(Item item)
 { s[n++] = item; }

 public Item pop()
 { return s[--n]; }

}

stack of strings (fixed-length array) generic stack (fixed-length array)

public class FixedCapacityStackOfStrings {
 private String[] s;
 private int n = 0;

 public Fixed...OfStrings(int capacity)
 { s = new String[capacity]; }

 public boolean isEmpty()
 { return n == 0; }

 public void push(String item)
 { s[n++] = item; }

 public String pop()
 { return s[--n]; }

}

the ugly cast

Unchecked cast

 
 
 
 
 
 
 
 
 
 
Q. Why does Java require a cast (or reflection)?
Short answer. Backward compatibility.
Long answer. Need to learn about type erasure and covariant arrays.

41

~/cos226/queues> javac -Xlint:unchecked FixedCapacityStack.java

FixedCapacityStack.java:26: warning: [unchecked] unchecked cast

 s = (Item[]) new Object[capacity];

 ^

 required: Item[]

 found: Object[]

 where Item is a type-variable:

 Item extends Object declared in class FixedCapacityStack

1 warning

Stacks and queues: quiz 4

How to declare and initialize an empty stack of integers in Java?

A. Stack stack = new Stack<int>();

B. Stack<int> stack = new Stack();

C. Stack<int> stack = new Stack<int>();

D. None of the above.

42

Generic data types: autoboxing and unboxing

Q. What to do about primitive types? 

Wrapper type.

・Each primitive type has an associated “wrapper” reference type.

・Ex: Integer is wrapper type associated with int.  

Autoboxing. Automatic cast from primitive type to wrapper type.
Unboxing. Automatic cast from wrapper type to primitive type.  
 
 
 
 
 

Bottom line. Client code can use generic stack for any type of data.
Caveat. Performance overhead for primitive types.

43

Stack<Integer> stack = new Stack<Integer>();

stack.push(17); // stack.push(Integer.valueOf(17));

int a = stack.pop(); // int a = stack.pop().intValue();

Java collections framework

Java's library of collection data types.

・java.util.LinkedList [doubly linked list]

・java.util.ArrayList [resizing array]

This course. Implement from scratch (once).
Beyond. Basis for understanding performance guarantees.
 
Best practices.

・Use Stack and Queue in algs4.jar for stacks and queues to improve design and efficiency.

・Use java.util.ArrayList or java.util.LinkedList when other ops needed.  
(but remember that some ops are inefficient)

44

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

Assignment Logo Kathleen Ma ’18 by author

Stack of Books Adobe Stock Education License

No Loitering signsworldwide.com

Bob Tarjan Heidelberg Laureate

Long Queue Line Adobe Stock Education License

Stack of Apples Adobe Stock Education License

Stack of Fruit Adobe Stock Education License

Queue of People Adobe Stock Education License

Stack of Sweaters Adobe Stock Education License

ChatGPT Phone Adobe Stock Editorial Use

https://stock.adobe.com/images/tall-pile-of-books-lots-various-isolated-transparent-background-photo-png-file/546470718
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.signsworldwide.com/traffic-safety-signs/no-loitering-18h-x-12w-aluminum-sign.html
https://www.heidelberg-laureate-forum.org/laureate/robert-endre-tarjan.html
https://stock.adobe.com/images/people-queuing-up-in-a-long-queue-line/135762482
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/grune-apfel/62280281
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/colorful-fresh-fruits-totem/518287
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/queue-people-are-standing-in-line-vector-image-of-people-from-the-back-a-crowd-of-people/479350972
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/stack-of-sweaters/28195940
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/chatgpt-vector-mockup-smartphone-screen-concept-template-with-logo-login-signup-new-chat-prompt-interface-openai-chatbot-screen-interface-template-on-iphone/580095635
https://stock.adobe.com/enterprise-conditions#editorialUse

A final thought

“ Linked lists, nodes connected with care,

 Arrays resizing, with memory to spare.

 Organizing data, their only need,

 Helping us, with efficiency indeed. ”

