
Page 1 of 2

Princeton University
COS 217: Introduction to Programming Systems

C Variable Declarations and Definitions

A variable declaration is a statement that informs the compiler of the name, type, scope, linkage, and
duration of the variable. A variable definition is a declaration that causes the compiler to allocate memory.

Scope (compile-time concept, a.k.a. Visibility)

File: The variable is accessible within the file in which it is declared, from the point of declaration to the
end of the file.

Block: The variable is accessible within the block in which it is declared, from the point of declaration to
the end of the block.

Two other scopes exist in the C standard that we will not see in COS 217: function and function prototype.

Linkage (link-time concept)

External: The variable is accessible from multiple files.

Internal: The variable is accessible from only the file in which it is declared. This is a simplification of the
C standard, which differentiates “internal linkage” and “no linkage”. See King 18.2 for a fuller discussion.

Storage Duration (run-time concept)

Automatic (a.k.a. Temporary): The variable exists in memory only during the execution of the function
or block in which it is declared. The variable’s value is stored in its activation record on the runtime Stack.

Static (a.k.a. Process): The variable exists in memory throughout the entire process. The variable’s value
is stored in the Data Section (if the programmer specifies a non-zero initial value) or the BSS Section (if the
programmer does not specify an initial value)†. The variable’s value is initialized at program startup. If in
the BSS section, its initial value is 0.

C Code Decl/Def Scope Linkage Duration Location
int a = 5; definition file external process
int b; definition† file external process
extern int c = 5; definition file external process
extern int d; declaration file external† process ???
static int e = 5; definition file internal process
static int f; definition file internal process
void fun(int g) { definition block internal temporary
 int h = 5; definition block internal temporary
 int i; definition block internal temporary
 extern int j = 5; ILLEGAL
 extern int k; declaration block ??? process ???
 static int l = 5; definition block internal process
 static int m; definition block internal process
 ... }

† The location for variables with process duration that are initialized to zero in their definition is compiler dependent. Our current
version of gcc217 stores them in the BSS section.
b: the C standard says this is a “tentative definition”, which the compiler treats as the “real” definition so long as there is no duplicate
declaration in this file. gcc217’s linker treats this as a “real” definition. (See lines 10 and 11 on the second page of this handout.)
d: has the same linkage as a visible prior declaration; only useful for externally linked global variable from another file.

Page 2 of 2

Examples of Global Variable Declarations and Definitions

Suppose a program consists of file1.c and file2.c (only). Consider these combinations of
global variable declarations and definitions:

 file1.c file2.c Result
 Reasonable combinations:
1 static int i = 5; static int i = 6; static def / static def => OK

2 static int i = 5; static int i; static def / static def => OK

3 static int i; static int i; static def / static def => OK

4 int i = 5; extern int i; def / decl => OK

5 int i; extern int i; def / decl => OK

 Less reasonable combinations:
6 int i = 5; static int i = 6; def / static def => OK

7 int i = 5; static int i; def / static def => OK

8 int i; static int i = 6; def / static def => OK

9 int i; static int i; def / static def => OK

 Erroneous combinations:
10 int i = 5; int i; def / tentative def => Undefined in C

standard: error in gcc217, but some
compilers and linkers will treat file2’s
i as a declaration (like line 4 above)

11 int i; int i; tentative def / tentative def =>
Undefined in C standard: error in gcc217,
but some compilers and linkers will treat
the first i seen as a definition and the
other as a declaration (like line 5)

12 int i = 5; int i = 5; def / def => error

13 extern int i; extern int i; decl / decl => error

14 extern int i; static int i = 6; decl / static def => error

15 extern int i; static int i; decl / static def => error

Copyright © 2024 by Robert M. Dondero, Jr., Xiaoyan Li, and Christopher Moretti

