-

COS 217: Introduction to Programming Systems

Assembly Language

Local Variables and Function Calls

% PRINCETON UNIVERSITY

-

Logistics

e Christopher Moretti will present lecture on Wednesday 11/13

 Office hours on Wednesday 11/13 are cancelled.
* Make-up office hours on Thursday 11/14 at 1pm, room TBA

-

Goals of this Lecture

Help you learn:

* Function call problems
e AARCH64 solutions

e Pertinent instructions and conventions

-

Function Call Problems

(1) Calling and returning
* How does caller function jump to callee function?
* How does callee function jump back to the right place in caller function?

(2) Passing arguments
* How does caller function pass arguments to callee function?

(3) Storing local variables
* Where does callee function store its local variables?

(4) Returning a value
e How does callee function send return value back to caller function?
e How does caller function access the return value?

(5) Optimization
* How do caller and callee function minimize memory access?

-

Running Example

long absadd(long a, long b)
{
long absA, absB, sum;
absA = labs(a);
absB = labs(b);
sum = absA + absB;
return sum;

Calls standard C labs() function
* Returns absolute value of given long

o2

CALLING AND RETURNING

https://en.wikipedia.org/wiki/File:Arrows.svg
https://creativecommons.org/licenses/by-sa/3.0/

-

Problem 1: Calling and Returning

How does caller call the callee?
l.e., Jump to the address of the callee’s first instruction

How does callee get back to the right place in the caller?
l.e., Jump to the instruction immediately following the most-recently-executed call

... absadd(3L, -4L);

N 1
\ long absadd(long a, long b)
{

long absA, absB, sum;
absA = labs(a);
2 absB = labs(b);

sum = absA + absB;

~Feturn sum;
}

-
|> IClicker Question

Q: Based on last lecture, what instructions would we use to “jump” into and back out

of the callee?
\ long absadd(long a, long b)
{

long absA, absB, sum;
absA = labs(a);

absB = labs(b);

. sum = absA + absB;
A. 2 conditional branches T«-sturn sum;

... absadd(3L, -4L);

B. 1 conditional branch, then 1
unconditional branch

C. 1 unconditional branch, then 1
conditional branch

D. 2 unconditional branches

% E. Something more complicated

-

Attempted Solution: b Instruction

Attempted solution: caller and callee use b (unconditional branch) instruction

-

Attempted Solution: b Instruction

10

Problem: callee may be called by multiple callers

-

Partial Solution: Use Register

11

br (branch register) instruction branches to address in X register operand

Correctly returns to either f1 or 2!

-

Partial Solution: Auto Register

12|

bl (branch and link) instruction stores return point in X30
ret (return) instruction returns to address in X30

Correctly returns
to either f1 or f2

Aside: so ret is identical to br x30, right? Yes and no ...
https://www.mattkeeter.com/blog/2023-01-25-branch/ W,

https://www.mattkeeter.com/blog/2023-01-25-branch/

-

Still not quite there yet ...

13

Problem: Cannot handle nested function calls

Problem if f() calls g()
then g() calls h()

Return address g() — f() is lost
g() returns to the middle of g()!

-
Rest of Solution: Use the Stack

Observations:
* May need to store many return addresses
e The number of nested function calls is not known in advance

* A return address must be saved for as long as the invocation of this function is live, and
discarded thereafter

e Stored return addresses are destroyed in
reverse order of creation l

e f() calls g() = return addr for g is stored

e g() calls h() = return addr for h is stored addr for h
e h() returns to g() = return addr for h is destroyed addr for g
addr for f

e g() returns to f() = return addr for g is destroyed
e LIFO data structure (stack) is appropriate

AARCHG4 solution:
» Use the STACK section of memory, usually accessed via SP

14

-

Saving Link (Return) Addresses

15

Push X30 on stack when entering a function
Pop X30 from stack before returning from a function

-
Stack Operations

SP (stack pointer) register points to top of stack

e (Can be used in Idr and str instructions
e (Can be used in arithmetic instructions
* AARCHOG64 requirement: must be multiple of 16

sp —

16

-

Stack Operations

17

To create (push) a new stack frame:

* Decrement sp
sub sp, sp, 16

0]
New SP >
Old Sp —

-

Stack Operations

18

To use the stack frame:

 Load/store at or offset from sp
str x30, [sp]

ldr x30, [sp]

0]
New SP <
OldSp =——

Old x30

-

Stack Operations

19

To delete (pop) the stack frame:

* |ncrement sp
add sp, sp, 16

Old SP

New SP

>

Old x30

-

Saving Link (Return) Addresses

Push X30 on stack when entering a function
Pop X30 from stack before returning from a function

(

Running Example

22

PASSING ARGUMENTS

This Photo by tableatny is licensed under CC BY

https://www.flickr.com/photos/53370644@N06/4976497160
https://creativecommons.org/licenses/by/3.0/

-

Problem 2: Passing Arguments

23|

Problem:

* How does caller pass arguments to callee?
e How does callee accept parameters from caller?

long absadd(long a, long b)
{
long absA, absB, sum;
absA = labs(a);
absB = labs(b);
sum = absA + absB;
return sum;

}

-

ARM Solution 1: Use the Stack

24

Observations (déja vu):

 May need to store many argument sets
* The number of argument sets is not known in advance

e |If this function calls any others, argument set must be saved
for as long as the invocation of this function is live, and discarded thereafter

e Stored argument sets are destroyed in reverse order of creation
e LIFO data structure (stack) is appropriate

-
ARM Solution 2: Use Registers

AARCHG4 solution:
e Pass first 8 (integer or address) arguments in registers for efficiency
e X0..X7 and/or WO..W7
* More than 8 arguments =
e Pass arguments 9, 10, ... on the stack
e (Beyond scope of COS 217)
* Arguments are structures =

e Pass arguments on the stack
* (Beyond scope of COS 217)

Callee function then saves arguments to stack
e Or maybe not!
e See “optimization” later this lecture
» Callee accesses arguments as positive offsets vs. SP

25|

-

Running Example

Sp —>

OldSP —

Return addr

b

a

27

STORING LOCAL VARIABLES

https://unsplash.com/@fotofyn

-

Problem 3: Storing Local Variables

28|

Where does callee function store its local variables?

long absadd(long a, long b)
{
long absA, absB, sum;
absA = labs(a);
absB = labs(b);
sum = absA + absB;
return sum;

}

-

ARM Solution: Use the Stack

29

Observations (this is getting repetitive ...):

* May need to store many local variable sets
e The number of local variable sets is not known in advance

* Local variable sets must be saved
for as long as the invocation of this function is live, and discarded thereafter

e Stored local variable sets are destroyed in reverse order of creation
e LIFO data structure (stack) is appropriate

AARCHG4 solution:

e Use the STACK section of memory

e Or maybe not!
e See later this lecture

-

Running Example

30!

SP
SP+8
SP+16
SP+24
SP+32
SP+40
Old SP

Return addr

b

d

sum

absB

absA

31

RETURNING A VALUE

@single lens reflex

https://unsplash.com/@single_lens_reflex

-
Problem 4: Return Values

Problem:
e How does callee function send return value back to caller function?
e How does caller function access return value?

long absadd(long a, long b)
{
long absA, absB, sum;
absA = labs(a);
absB = labs(b);
sum = absA + absB;
return sum;

32

-

ARM Solution: Use X0 / WO

33

In principle
e Store return value in stack frame of caller

Or, for efficiency
* Known small size = store return value in register
e Other = store return value in stack

AARCHG4 convention

* Integer or address:
e Store return value in XO / WO

* Floating-point number:
e Store return value in floating-point register
e (Beyond scope of COS 217)

e Structure:
e Store return value in memory pointed to by X8
e (Beyond scope of COS 217)

-

Running Example

34

SP
SP+8
SP+16
SP+24
SP+32
SP+40
Old SP

Return addr

b

d

sum

absB

absA

35

(More to come on this general topic in Lecture 21.)

OPTIMIZATION

-

Problem 5: Optimization

36|

Observation: Accessing memory is expensive
* Orders of magnitude more expensive than accessing registers
 For efficiency, want to store parameters and local variables in registers (vs. memory) if possible

Observation: Registers are a finite resource
 In principle: Each function should have its own registers
* In reality: All functions share same small set of registers

Problem: How do caller and callee use the same set of registers without interference?
» Callee may use register that the caller also is using
* When callee returns control to caller, old register contents may have been lost
 Caller function cannot continue where it left off

-

ARM Solution: Register Conventions

37

Callee-saved registers
e X19..X29 (or W19..W29)
e Callee function must preserve contents
e [f necessary...
 Callee saves to stack near beginning
 Callee restores from stack near end

-

ARM Solution: Register Conventions

38|

Callee-saved registers
e X19..X29 (or W19..W29)
e Callee function must preserve contents
e [f necessary...
 Callee saves to stack near beginning
» Callee restores from stack near end

Caller-saved registers
e X8..X18 (or W8..W18) - plus parameters in X0..X7
e Callee function can change contents
e [f necessary...
 Caller saves to stack before call
 Caller restores from stack after call

-

Running Example

39

Parameter handling in unoptimized version:
e absadd() accepts parameters (a and b) in XO and X1

e At beginning, absadd() copies contents of XO and X1 to stack
e Body of absadd() uses stack

e At end, absadd() pops parameters from stack

Parameter handling in optimized version:
e absadd() accepts parameters (a and b) in XO and X1

* At beginning, copies contents of XO and X1 to callee-saved registers X19 and X20
e Body of absadd() uses X19 and X20
* Must be careful:

e absadd()cannot corrupt contents of X19 and X20
e S0 absadd() must save X19 and X20 near beginning, and restore near end

-

Running Example

40|

Local variable handling in unoptimized version:
e At beginning, absadd() allocates space for local variables (absA, absB, sum) on stack
e Body of absadd() uses stack
e At end, absadd() pops local variables from stack

Local variable handling in optimized version:
e absadd() keeps local variables in callee-saved registers X21, X22, X23
e Body of absadd() uses X21, X22, X23
e Must be careful:
e absadd()cannot change contents of X21, X22, or X23
e S0 absadd() must save X21, X22, and X23 near beginning, and restore near end

-

Running Example

41

absadd() stores parameters and
local vars in X19..X23, not in
memory

absadd() cannot destroy contents
of X19..X23

So absadd() must save X19..X23
near beginning and restore near
end

-

Eliminating Redundant Copies

42

// long absadd(long a, long b)
absadd:
// long absA, absB, sum
sub sp, sp, 32
str x30, [sp] // Save x30
str x19, [sp, 8] // Save x19, use for b
str x20, [sp, 16] // Save x20, use for absA
mov x19, x1 // Save b in x19
// absA = labs(a)
bl labs // a already in x0
mov x20, X0 // Save absA
// absB = labs(b)
mov x0, x19 //Load b
bl labs
// sum = absA + absB
add x0, x20, x0 // x0 held absB, now holds sum
// return sum — already in x0
Idr x30, [sp] // Restore x30
Idr x19, [sp, 8] // Restore x19
Idr x20, [sp, 16] // Restore x20
add sp, sp, 32
ret

Further optimization: remove
redundant moves between
registers

e “Hybrid” pattern that uses
both caller- and callee-
saved registers

e Can be confusing:
no longer systematic
mapping between
variables and registers

e Attempt only after you have
working code!

e Save working versions for
easy comparison!

-

Non-Optimized vs. Optimized Patterns

43|

Unoptimized pattern
e Parameters and local variables strictly in memory (stack) during function execution
* Pro: Always possible
e Con: Inefficient
e gcc compiler uses when invoked without -0 option

Optimized pattern
» Parameters and local variables mostly in registers during function execution
* Pro: Efficient
e Con: Sometimes impossible
* Too many local variables
* Local variable is a structure or array
e Function computes address of parameter or local variable
e gcc compiler uses when invoked with -0 option, when it can!

WRITING READABLE CODE

-

Writing Readable Code

45

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

-

Writing Readable Code

46

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

Using .equ and .req

* To define a symbolic name for a constant:
.equ SOMENAME, nnn

* To define a symbolic name for a register

(e.g. what variable it holds):
SOMENAME .reqg Xnn

-

Writing Readable Code

47

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

Using .equ and .req

* To define a symbolic name for a constant:
.equ SOMENAME, nnn

* To define a symbolic name for a register

(e.g. what variable it holds):
SOMENAME .reqg Xnn

-
Writing Readable Code

48|

Problem

e Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

Using .equ and .req

e To define a symbolic name for a constant:
.equ SOMENAME, nnn

* To define a symbolic name for a register

(e.g. what variable it holds):
SOMENAME .req Xnn

-

Writing Readable Code

49

Problem

* Hardcoded sizes, offsets, registers are
difficult to read, understand, debug

Using .equ and .req

* To define a symbolic name for a constant:
.equ SOMENAME, nnn

* To define a symbolic name for a register

(e.g. what variable it holds):
SOMENAME .reqg Xnn

-

Summary

50

Function calls in AARCHG64 assembly language

Calling and returning
e bl instruction saves return address in X30 and jumps
e ret instruction jumps back to address in X30

Passing arguments
» Caller copies args to caller-saved registers (in prescribed order)
* Unoptimized pattern:
» Callee pushes args to stack
e Callee uses args as positive offsets from SP
e Callee pops args from stack
e Optimized pattern:
» Callee keeps args in callee-saved registers
* Be careful!

-

Summary (cont.)

51

Storing local variables
e Unoptimized pattern:
e Callee pushes local vars onto stack
e Callee uses local vars as positive offsets from SP
e Callee pops local vars from stack
e Optimized pattern:
» Callee keeps local vars in callee-saved registers

Returning values

e Callee places return value in XO
e Caller accesses return value in X0

	Slide 1: Assembly Language
	Slide 2: Logistics
	Slide 3: Goals of this Lecture
	Slide 4: Function Call Problems
	Slide 5: Running Example
	Slide 6: calling and returning
	Slide 7: Problem 1: Calling and Returning
	Slide 8: iClicker Question
	Slide 9: Attempted Solution: b Instruction
	Slide 10: Attempted Solution: b Instruction
	Slide 11: Partial Solution: Use Register
	Slide 12: Partial Solution: Auto Register
	Slide 13: Still not quite there yet …
	Slide 14: Rest of Solution: Use the Stack
	Slide 15: Saving Link (Return) Addresses
	Slide 16: Stack Operations
	Slide 17: Stack Operations
	Slide 18: Stack Operations
	Slide 19: Stack Operations
	Slide 20: Saving Link (Return) Addresses
	Slide 21: Running Example
	Slide 22: Passing arguments
	Slide 23: Problem 2: Passing Arguments
	Slide 24: ARM Solution 1: Use the Stack
	Slide 25: ARM Solution 2: Use Registers
	Slide 26: Running Example
	Slide 27: storing local variables
	Slide 28: Problem 3: Storing Local Variables
	Slide 29: ARM Solution: Use the Stack
	Slide 30: Running Example
	Slide 31: returning a value
	Slide 32: Problem 4: Return Values
	Slide 33: ARM Solution: Use X0 / W0
	Slide 34: Running Example
	Slide 35: optimization
	Slide 36: Problem 5: Optimization
	Slide 37: ARM Solution: Register Conventions
	Slide 38: ARM Solution: Register Conventions
	Slide 39: Running Example
	Slide 40: Running Example
	Slide 41: Running Example
	Slide 42: Eliminating Redundant Copies
	Slide 43: Non-Optimized vs. Optimized Patterns
	Slide 44: Writing Readable Code
	Slide 45: Writing Readable Code
	Slide 46: Writing Readable Code
	Slide 47: Writing Readable Code
	Slide 48: Writing Readable Code
	Slide 49: Writing Readable Code
	Slide 50: Summary
	Slide 51: Summary (cont.)

