
COS 217: Introduction to Programming Systems

Assembly Language

Part 1



“Under the hood”

Context of this Lecture

C Language

Assembly Language

Machine Language

2



Agenda

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

3



High-Level Languages

Characteristics

•Portable (to varying degrees)

•Complex

• One statement can do a lot of work – 

good ratio of functionality to code size

•Human readable

• Structured: if(), for(), while(), etc.

• Variable names can hide details of

where data is stored (stack, heap, etc.)

• Type system allows compiler to check 

usage details without burdening reader

4

int collatz(int n)

{

   int count = 0;

   while (n > 1) {

      count++;

      if (n & 1)

         n = 3 * n + 1;

      else

         n /= 2;

   }

   return count;
}



Machine Languages

Characteristics

•Not portable (hardware-specific)

•Simple

• Each instruction does a

simple task – poor ratio of

functionality to code size

•Not human readable

• Not structured

• Requires lots of effort!

• Requires tool support

5

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

9222 9120 1121 A120 1121 A121 7211 0000

0000 0001 0002 0003 0004 0005 0006 0007

0008 0009 000A 000B 000C 000D 000E 000F

0000 0000 0000 FE10 FACE CAFE ACED CEDE

1234 5678 9ABC DEF0 0000 0000 F00D 0000

0000 0000 EEEE 1111 EEEE 1111 0000 0000

B1B2 F1F5 0000 0000 0000 0000 0000 0000



Assembly Languages

Characteristics

•Not portable

• Each assembly language instruction

maps to one machine instruction

•Simple

• Each instruction does a simple task

•Human readable
(In the same sense that Polish is

human readable … if you know Polish.)

6

ands wzr, w0, #1
 beq else

b endif
else:

endif: 

asr w0, w0, 1

add w2, w0, w0
 add w0, w0, w2
 add w0, w0, 1

add w1, w1, #1

loop:
 cmp w0, 1
 ble endloop

b loop
endloop:

mov w1, 0



Why Learn Assembly Language?

Knowing assembly language helps you:
•Write faster code

• In assembly language

• Potentially even in a high-level language!

•Write safer code

• Understanding mechanism of potential security problems helps you avoid them –

even in high-level languages

•Understand what’s happening “under the hood”
• Someone needs to develop future computer systems

• Maybe that will be you!

•Become more comfortable with levels of abstraction

• Become a better programmer at all language levels!

7



Why Learn ARM Assembly Lang?

Why learn ARMv8 (a.k.a. AARCH64 or A64) assembly language?

Pros
•ARM is the most widely used processor architecture in the world

(in your phone, in your Mac, in your Chromebook, in Armlab,

in internet-of-things devices)

•ARM has a modern and (relatively) elegant instruction set,

compared to the expansive but ugly x86-64 instruction set

Cons

•x86-64 still has a huge presence in desktop/laptop/cloud (for now?)
8



Lectures vs. Precepts

Lectures Precepts

Study partial programs Study complete programs

Begin with simple constructs; 

proceed to complex ones

Begin with small programs; 

proceed to large ones

Emphasis on reading code Emphasis on writing code

Approach to studying assembly language:

9



Agenda

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

10



John von Neumann (1903-1957)

In computing

• Stored program computers

• Cellular automata, self-replication, 

• Game theory

• mergesort

Other interests

• Mathematics, statistics, game theory

• Nuclear physics

Princeton connection

• Princeton University & IAS, 1930-1957

• https://paw.princeton.edu/article/early-history-computing-princeton

Known for the “Von Neumann architecture”

• In which (machine-language) programs are just data in memory

• a.k.a. “Princeton architecture” – contrast to the now-mostly-obsolete “Harvard architecture”

11

https://paw.princeton.edu/article/early-history-computing-princeton


Von Neumann Architecture

RAM

Control

Unit

CPU

Registers

Data bus

ALU

Instructions (encoded within words)

are fetched from RAM

Control unit interprets instructions:

• to shuffle data between registers 

and RAM

• to move data from registers to ALU 

(arithmetic+logic unit) where 

operations are performed 

12



Von Neumann Architecture

13

Registers

Small amount of storage on the CPU

•Top of the “storage hierarchy”

•Very {small, expensive, fast}

ALU instructions operate on registers

RAM

Control

Unit

CPU

Registers

Data bus

ALU



ALU Arithmetic Example

14

ALU

src1 src2

dest

operation
ALU flags

RAM

Control

Unit

CPU

Registers

Data bus

ALU



Von Neumann Architecture

RAM (Random Access Memory)

Conceptually: large array of bytes

(gigabytes+ in modern machines)

•Contains data 

   (program variables, structs, arrays)

•and the program itself in machine code!

Instructions are fetched from RAM

15

RAM

Control

Unit

CPU

Registers

Data bus

ALU



16

Time to reminisce about old TOYs

Thinking back to COS 126, 

how did you feel about TOY?

A. Loved it!

B. Wasn't a fan.

C. I placed out, so I have no idea 

what you're talking about.

boy sitting on white cloth surrounded by toys

Yuri Shirota

https://unsplash.com/@itshoobastank
https://unsplash.com/@itshoobastank


Time to reminisce about old TOYs

17
https://introcs.cs.princeton.edu/java/62toy/

https://introcs.cs.princeton.edu/java/62toy/


Registers and RAM

Typical pattern:
•Load data from RAM to registers

•Manipulate data in registers

•Store data from registers to RAM

On AARCH64, this pattern is enforced
•“Manipulation” instructions can only access registers

•This is known as a load-store architecture

(as opposed to “register-memory” architectures)

•Characteristic of “RISC” (Reduced Instruction Set Computer) vs.

“CISC” (Complex Instruction Set Computer) architectures, e.g. x8618



Registers (ARM-64 architecture)

19

x0 w0

63                           31                          0                   

x1 w1

…

x29 (FP) w29

x30 (LR) w30

xzr (all zeros) wzr

sp (stack pointer)

pc (program counter)

n z c v      pstate



General-Purpose 64-bit Registers

X0 ... X30
•Scratch space for instructions, parameter passing to/from functions,

return address for function calls, etc.

•Some have special roles defined in hardware (e.g. X30)

or defined by software convention (e.g. X29)

•Also available as 32-bit versions: W0 ... W30

XZR
•On read: all zeros

•On write: data thrown away

•Also available as 32-bit version: WZR

20



SP Register

Special-purpose register…

•SP (Stack Pointer):

Contains address of top (low memory address) 

of current function’s stack frame

Allows use of the STACK section of memory

(See Assembly Language: Function Calls lecture later)

(inactive)

(current)

…

SP

s
ta

c
k

 f
ra

m
e

s

low address

high address

21



PC Register

Special-purpose register…

•PC (Program Counter)

•Stores the location of the next instruction

•Address (in TEXT section) of machine-language instruction to be executed next

•Value changed:

•Automatically to implement sequential control flow (increment by 4 bytes)

•By branch instructions to implement selection, repetition

PC

T
E

X
T
 s

e
c
ti

o
n

22



PSTATE Register

Special-purpose register…

•Contains condition flags:  

     n (Negative),   z (Zero),  c (Carry),  v (oVerflow)

•Affected by compare (cmp) instruction

•And many others, if requested

•Used by conditional branch instructions

• beq, bne, blo, bhi, ble, bge, …

• (See Assembly Language: Part 2 lecture)
23

n z c v   (rest of pstate)



Agenda

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

24



ALU Arithmetic Example

25

ALU

src1 src2

dest

operation
ALU flags

RAM

Control

Unit

CPU

Registers

Data bus

ALU



Instruction Format

Many instructions have this format:

•name: mnemonic name of the instruction (add, sub, mul, and, etc.)

•s:  if present, specifies that condition flags should be Set

•dest and src1,src2 are  x  registers:  64-bit operation

•dest and src1,src2 are  w registers:  32-bit operation

•No mixing and matching between x and w registers

•src2 may be a constant (“immediate” value) instead of a register

name{,s} dest, src1, src2
name{,s} dest, src1, immed

26

ALU

src1 src2

dest

operation ALU PSTATE



64-bit Arithmetic

27

static long length;

static long width;

static long perim;

...

perim =

  (length + width) * 2;

Assume that…

•there’s a good reason for having variables 

with file scope, process duration

•length held in x1

•width held in x2

•perim held in x3

We’ll see later how to make this happen

C code:

add x3, x1, x2

lsl x3, x3, 1

Assembly code: Recall use of left 

shift by 1 bit to 

multiply by 2



More Arithmetic

static long x;

static long y;

static long z;

...

z = x - y;

z = x * y;

z = x / y;

z = x & y;

z = x | y;

z = x ^ y;

z = x >> y;

sub x3, x1, x2

 mul x3, x1, x2

 sdiv x3, x1, x2

 and x3, x1, x2

 orr x3, x1, x2

 eor x3, x1, x2

 asr x3, x1, x2
28

Assume that…

•x held in x1

•y held in x2

•z held in x3

Assembly code:

Not xor!



More Arithmetic: Shortcuts

static long x;

static long y;

static long z;

...

z = x;

z = -x;

mov x3, x1

 neg x3, x1

29

orr x3, xzr, x1

 sub x3, xzr, x1

These are actually 

assembler shortcuts 

for instructions with 

XZR!

Assume that…

•x held in x1

•y held in x2

•z held in x3

Assembly code:



Signed vs Unsigned?

static long x;

static unsigned long y;

...

x++;

y--;

add x1, x1, 1

sub x2, x2, 1

30

Mostly the same algorithms, same instructions!

•Can set different condition flags in PSTATE

•But some exceptions…

Assume that…

•x held in x1

•y held in x2

Assembly code:



Signed vs Unsigned: Exceptions

sdiv x1, x1, 17

udiv x2, x2, 42

asr x1, x1, 1

lsr x2, x2, 2

31

static long x;

static unsigned long y;

...

x /= 17;

y /= 42;

x >>= 1;

y >>= 2;

Assume that…

•x held in x1

•y held in x2

Assembly code:

“Arithmetic” right shift 

(shift in sign bit on left) 

vs. “logical” right shift 

(shift in zeros on left)



32-bit Arithmetic using “w” registers

32

static int length;

static int width;

static int perim;

...

perim =

  (length + width) * 2;

Assume that…

•length held in w1

•width held in w2

•perim held in w3

C code:

add w3, w1, w2

lsl w3, w3, 1

Assembly code:



8- and 16-bit Arithmetic?

static char x;

static short y;

...

x++;

y--;

33

No specialized arithmetic instructions

•Use “w” registers

•Specialized “load” and “store” instructions for transfer of 

shorter data types from / to memory – we’ll see these later

•Corresponds to C language semantics: all arithmetic is 

implicitly done on (at least) ints



Agenda

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

34



Loads and Stores

Most basic way to load (from RAM) and store (to RAM):

•dest and src are registers!

•The addresses (src for ldr, dest for str) must be x-flavored

•Other operands (dest for ldr, src for str) can be x-flavored or w-flavored

•Contents of registers in [brackets] must be memory addresses

•Every memory access is through a “pointer”!

35

ldr dest, [src]
str src, [dest]



Signed vs Unsigned, 8- and 16-bit

ldrb dest, [src]

ldrh dest, [src]

strb src, [dest]

strh src, [dest]

ldrsb dest, [src]

ldrsh dest, [src]

ldrsw dest, [src]

36

Special instructions for reading/writing Bytes (8 bit) and shorts (“Half-words”: 16 bit)

•See appendix of these slides for information on ordering:

little-endian vs. big-endian

Special instructions for signed reads

•“Sign-extend” byte, half-word, or word to 32 or 64 bits



Loads and Stores

Most basic way to load (from RAM) and store (to RAM):

•dest and src are registers!

• The addresses (src for ldr, dest for str) must be x-flavored

• Other operands (dest for ldr, src for str) can be x-flavored or w-flavored

•Contents of registers in [brackets] must be memory addresses

•Every memory access is through a “pointer”!

•How to get correct memory address into register?

•Depends on whether data is on stack (local variables),

heap (dynamically-allocated memory), or global / static

•For today, we’ll look only at the global / static case
37

ldr dest, [src]
str src, [dest]



Our First Full Program*

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
38

* Sorry, I know by convention it should be “Hello, World!”. You’ll see that in precept.



Memory sections

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
39

Sections  (Stack/heap are different!)

.rodata: read-only

.data: read-write

.bss: read-write (initialized to 0)

.text: read-only, program code

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



Variable definitions

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
40

Declaring data

“Labels” for locations in memory
.word: 32-bit int and initial value

See appendix for variables in other sections, with other types.

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



main()

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
41

Global visibility

.global: Declare “main” to be a

globally-visible label

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



Make a “pointer”

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
42

Generating addresses

adr: put address of

a label in a register

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



Loads and Stores

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
43

Load and store

Use x0 as a “pointer” to load 

from and store to memory

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



Return

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
45

Return a value

ret: return to the caller, with

register 0* holding the return value

* w0 for int, x0 for long

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
46

x0

w1

w2

1

2

0

length

width

perim

Registers

Memory

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret

1

x0

w1

w2

1

2

0

length

width

perim

Registers Memory

47

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}

Registers



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
48

1

x0

w1

w2

1

2

0

length

width

perim

Registers Memory

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}

Registers



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
49

1

2

x0

w1

w2

1

2

0

length

width

perim

Registers Memory

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}

Registers



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
50

3

2

x0

w1

w2

1

2

0

length

width

perim

Registers Memory

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}

Registers



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
51

6

2

x0

w1

w2

1

2

0

length

width

perim

Registers Memory

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}

Registers



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
52

6

2

x0

w1

w2

1

2

0

length

width

perim

Registers Memory

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}

Registers



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
53

6

2

x0

w1

w2

1

2

6

length

width

perim

Registers Memory

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}

Registers



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
54

Return value

Passed back in register w0

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



Trace

.section .data

length: .word 1

width: .word 2

perim: .word 0

 .section .text

 .global main

main:

adr x0, length

ldr w1, [x0]

adr x0, width

ldr w2, [x0]

add w1, w1, w2

lsl w1, w1, 1

adr x0, perim

str w1, [x0]

mov w0, 0

ret
55

Return to caller

ret instruction

static int length = 1;

static int width = 2;

static int perim = 0;

int main()

{

 perim =

  (length + width) * 2;

  return 0;

}



Summary

Language levels

The basics of computer architecture

• Enough to understand AARCH64 assembly language

The basics of AARCH64 assembly language

• Instructions to perform arithmetic

• Instructions to define global data and perform data transfer 

To learn more

• Study more assembly language examples

• Chapters 2-5 of Pyeatt and Ughetta book

• Study compiler-generated assembly language code (though it will be challenging!)

• gcc217 –S somefile.c
56



DEFINING DATA: 

OTHER SECTIONS AND SIZES

Appendix 1

57



Defining Data: DATA Section 1

static char c = 'a';

static short s = 12;

static int i = 345;

static long l = 6789;

.section ".data"

c:

   .byte 'a'

s:

   .short 12

i:

   .word 345

l:

   .quad 6789

Notes:

.section directive 

              (to announce DATA section)

label definition 

              (marks a spot in RAM)

.byte  directive (1 byte)

.short directive (2 bytes)

.word  directive (4 bytes)

.quad  directive (8 bytes)
58



Defining Data: DATA Section 2

char c = 'a';

short s = 12;

int i = 345;

long l = 6789;

.section ".data"

   .global c

c: .byte 'a'

   .global s

s: .short 12

   .global i

i: .word 345

   .global l

l: .quad 6789

Notes:

Can place label on same line 

                  as next instruction

                  or directive

.global directive can also apply 

            to variables, not just functions

59



Defining Data: BSS Section

static char c;

static short s;

static int i;

static long l;

.section ".bss"

c:

   .skip 1

s:

   .skip 2

i:

   .skip 4

l:

   .skip 8

Notes:

.section directive 

              (to announce BSS section)

.skip directive

              (to specify number of bytes)

60



Defining Data: RODATA Section

…

…"hello\n"…;

…

.section ".rodata"

helloLabel:

   .string "hello\n"

Notes:

.section directive (to announce RODATA section)

.string directive

61



BYTE ORDER:

BIG-ENDIAN VS LITTLE-ENDIAN

Appendix 2

62



Byte Order 

AARCH64 is a little endian architecture

• Least significant byte of multi-byte entity

is stored at lowest memory address

• “Little end goes first”

Some other systems use big endian

• Most significant byte of multi-byte entity

is stored at lowest memory address

• “Big end goes first”

00000101
00000000
00000000
00000000

1000
1001
1002
1003

The int 5 at address 1000:

00000000
00000000
00000000
00000101

1000
1001
1002
1003

The int 5 at address 1000:

63



Byte Order Example 1

Byte 0: ff

Byte 1: 77

Byte 2: 33

Byte 3: 00

#include <stdio.h>
int main(void)
{  unsigned int i = 0x003377ff;
   unsigned char *p;
   int j;
   p = (unsigned char *)&i;
   for (j = 0; j < 4; j++) 
      printf("Byte %d: %2x\n", j, p[j]);
}

Output on a 

little-endian 

machine

Byte 0: 00

Byte 1: 33

Byte 2: 77

Byte 3: ff

Output on a 

big-endian 

machine

64



Byte Order Example 2

.section ".data"

foo: .word 7

   .section ".text”
  .global “main”

main:

adr x0, foo

ldrb w0, [x0]

ret

Note:

Flawed code; uses “b”
instructions to load from

a four-byte memory area 

What would be the value 

returned from w0 if 

AARCH64 were big endian?

AARCH64 is little endian, 

so what will be the value 

returned from w0?

65


	Slide 1: Assembly Language
	Slide 2: Context of this Lecture
	Slide 3: Agenda
	Slide 4: High-Level Languages
	Slide 5: Machine Languages
	Slide 6: Assembly Languages
	Slide 7: Why Learn Assembly Language?
	Slide 8: Why Learn ARM Assembly Lang?
	Slide 9: Lectures vs. Precepts
	Slide 10: Agenda
	Slide 11: John von Neumann (1903-1957)
	Slide 12: Von Neumann Architecture
	Slide 13: Von Neumann Architecture
	Slide 14: ALU Arithmetic Example
	Slide 15: Von Neumann Architecture
	Slide 16: Time to reminisce about old TOYs
	Slide 17: Time to reminisce about old TOYs
	Slide 18: Registers and RAM
	Slide 19: Registers (ARM-64 architecture)
	Slide 20: General-Purpose 64-bit Registers
	Slide 21: SP Register
	Slide 22: PC Register
	Slide 23: PSTATE Register
	Slide 24: Agenda
	Slide 25: ALU Arithmetic Example
	Slide 26: Instruction Format
	Slide 27: 64-bit Arithmetic
	Slide 28: More Arithmetic
	Slide 29: More Arithmetic: Shortcuts
	Slide 30: Signed vs Unsigned?
	Slide 31: Signed vs Unsigned: Exceptions
	Slide 32: 32-bit Arithmetic using “w” registers
	Slide 33: 8- and 16-bit Arithmetic?
	Slide 34: Agenda
	Slide 35: Loads and Stores
	Slide 36: Signed vs Unsigned, 8- and 16-bit
	Slide 37: Loads and Stores
	Slide 38: Our First Full Program*
	Slide 39: Memory sections
	Slide 40: Variable definitions
	Slide 41: main()
	Slide 42: Make a “pointer”
	Slide 43: Loads and Stores
	Slide 45: Return
	Slide 46: Trace
	Slide 47: Trace
	Slide 48: Trace
	Slide 49: Trace
	Slide 50: Trace
	Slide 51: Trace
	Slide 52: Trace
	Slide 53: Trace
	Slide 54: Trace
	Slide 55: Trace
	Slide 56: Summary
	Slide 57: Defining data:  other sections and sizes 
	Slide 58: Defining Data: DATA Section 1
	Slide 59: Defining Data: DATA Section 2
	Slide 60: Defining Data: BSS Section
	Slide 61: Defining Data: RODATA Section
	Slide 62: byte order: Big-endian vs little-endiaN 
	Slide 63: Byte Order 
	Slide 64: Byte Order Example 1
	Slide 65: Byte Order Example 2

