
COS 217: Introduction to Programming Systems

Modules and Interfaces

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike)

Chapter 4

@slgoetz

https://unsplash.com/@slgoetz

Goals of this Lecture

Help you learn:
•How to create high quality modules in C

Why?
•Abstraction is a powerful (the only?) technique available for understanding

large, complex systems

•A mature programmer knows how to find the abstractions in a large program

•A mature programmer knows how to convey a large program’s abstractions

via its modularity

2

Agenda

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

3

@danist07

https://unsplash.com/@danist07

Encapsulation + Information Hiding

A well-designed module encapsulates data
•An interface should hide implementation details

•A module should not allow clients to manipulate the data directly

•A module should use its functions to encapsulate its data

Why?
•Clarity: Encourages abstraction

•Security: Clients cannot corrupt object by changing its data in unintended ways

•Flexibility: Allows implementation to change – even the underlying

representation, e.g. data structure – without affecting clients

4

Barbara Liskov, a pioneer in CS

5

"An abstract data type defines a class of abstract

objects which is completely characterized by the

operations available on those objects. This means

that an abstract data type can be defined by defining

the characterizing operations for that type."
Barbara Liskov and Stephen Zilles.

"Programming with Abstract Data Types."

ACM SIGPLAN Conference on Very

High Level Languages, April 1974.

Turing Award winner 2008:

“For contributions to practical and

theoretical foundations of programming

language and system design, especially

related to data abstraction, fault tolerance,

and distributed computing.”

Abstract Data Type (ADT)

A data type has a representation:

and some operations:

6

struct Node {
 int key;
 struct Node *next;
};

struct List {
 struct Node *first;
}; struct List *new()

{
 struct List *p;
 p = calloc(1, sizeof(*p));
 assert(p != NULL);
 return p;
}

void insert(struct List *p, int key)
{
 struct Node *n;
 n = malloc(sizeof(*n));
 assert(n != NULL);
 n->key=key; n->next=p->first; p->first=n;
}

An abstract data type has a

hidden representation;

all client code must access

the type through its interface:

struct List;

struct List *new();
void insert(struct List *p, int key);
void concat(struct List *p,
 struct List *q);
int nth_key(struct List *p, int n);
...

Encapsulation with ADTs (wrong!)

7

list.h
struct Node {int key; struct Node *next;};
struct List {struct Node *first;};

struct List *new();
void insert(struct List *p, int key);
void concat(struct List *p,
 struct List *q);
int nth_key(struct List *p, int n);

#include "list.h"

int f(void) {
 struct List *p, *q;
 p = new();
 q = new();
 insert(p,6);
 insert(p,7);
 insert(q,5);
 concat(p,q);
 concat(q,p);
 return nth_key(q,1);

}

client.c list_linked.c
#include "list.h"

struct List *new()
{
 struct List *p;
 p = calloc(1, sizeof(*p));
 assert(p != NULL);
 return p;
}

void insert(struct List *p, int key) {...}

void concat(struct List *p, struct List *q) { ... }

int nth_key(struct List *p, int n) { ... }

If you put the

representation here,

then it’s not an

abstract data type,

it’s just a data type.
p->first = NULL;

Nothing stops a client

from doing this!

Encapsulation with ADTs (right!)

8

list.h

#include "list.h"

int f(void) {
 struct List *p, *q;
 p = new();
 q = new();
 insert (p,6);
 insert (p,7);
 insert (q,5);
 concat (p,q);
 concat (q,p);
 return nth_key(q,1);

}

client.c list_linked.c
#include "list.h"

struct Node {int key; struct Node *next;};
struct List {struct Node *first;};

struct List *new()
{
 struct List *p;
 p = calloc(1, sizeof(*p));
 assert(p != NULL);
 return p;
}

void insert(struct List *p, int key) {...}
void concat(struct List *p, struct List *q) { ... }
int nth_key(struct List *p, int n) { ... }

struct List;

struct List *new();
void insert(struct List *p, int key);
void concat(struct List *p,
 struct List *q);
int nth_key(struct List *p, int n);

Including only the

declaration in header

file enforces the

abstraction: it keeps

clients from accessing

fields of the struct,

allowing

implementation to

change

This is OK! Client programs relying on unspecified

behavior might break with a new implementation.

Doctor, it
hurts when
I do this

Then don’t
do that!

Specifications

If you can’t see the representation (or the implementations of insert, concat, nth_key), then

how are you supposed to know what they do?

Specification:

9

struct List;

struct List *new();
void insert(struct list *p, int key);
void concat(struct list *p,
 struct list *q);
int nth_key(struct list *p, int n);A List p represents a sequence of integers σ.

Operation new(): returns a list p representing the empty sequence.

Operation insert(p, i): if p represents σ, causes p to now represent i ∙σ.

Operation concat(p, q): if p represents σ1 and q represents σ2,

causes p to represent σ1∙σ2 and leaves q representing σ2.

Operation nth_key(p, n): if p represents σ1∙i ∙σ2 where the length of σ1 is n, returns i

 otherwise (if the length of the string represented by p is ≤ n), it returns an arbitrary integer.

Reasoning About Client Code

10

int f(void) {
 struct List *p, *q;
 p = new();
 q = new();
 insert (p,6);
 insert (p,7);
 insert (q,5);
 concat (p,q);
 concat (q,p);
 return nth_key(q,1);
}

p:[]
p:[] q:[]
p:[6] q:[]
p:[7,6] q:[]
p:[7,6] q:[5]
p:[7,6,5] q:[5]
p:[7,6,5] q:[5,7,6,5]
return 7

struct List;

struct List * new(void);
void insert(struct list *p, int key);
void concat(struct list *p,
 struct list *q);
int nth_key(struct list *p, int n);

List of specifications allows for

reasoning about the effects of

client code.

C is not inherently an object-oriented language, but can use

language features to encourage object-oriented thinking

•Interface provides List_T abbreviation for client

• Interface encourages client to think of objects (not structures)

and object references (not pointers to structures)

•Client still cannot access data directly: data is “opaque” to client

Object-Oriented Thinking

typedef struct List *List_T;

List_T new();

void insert(List_T p, int key);

void concat(List_T p, List_T q);

int nth_key(List_T p, int n);

"Opaque" pointer type

11

12

Concrete Question: Abstract Data Type?

Q: Is a string, as used by the <string.h> module an ADT?

A. Yes – clients can’t know the

implementation of strcpy, etc.

B. Yes – clients can’t know the

representation of strings.

C. No – clients can know the

implementation of strcpy, etc.

D. No – clients can know the

representation of strings.

E. No – strings are not a datatype.

D

We know the underlying

representation of strings.

Clients can manipulate the

string’s state directly, not

through the interface.

Living with ADTs

Sometimes need to provide controlled access to internal representation

• For example, what if we want to be able to print contents of a List_T?

• Or perform some other operation on the keys?

• Do we have to define every possible operation in list.h?

13

/* list_linked.c */
void foreach_node(struct Node *n, void (*func)(int key))
{
 if (!n)
 return;
 (*func)(n->key);
 foreach_node(n->next, func);
}

void foreach(List_T p, void (*func)(int key))
{
 foreach_node(p->first, func);
}

Function Pointers

Sometimes need to provide controlled access to internal representation

Function pointers to the rescue:

14

/* list.h */
void foreach(List_T p, void (*func)(int key));

/* main.c */

void print_int(int i)
{
 printf(“%d\n”, i);
}

int main()
{
 List_T p = new();
 insert(p, 42);
 insert(p, 78);
 foreach(p, &print_int);
}

Function pointer parameter

Call via function pointer

Take address of a function

Agenda

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

16

@frankiefoto

https://unsplash.com/@frankiefoto

Resource Management

A well-designed module manages resources consistently
•A module should release a resource iff the module has claimed that resource

•Examples

• Object allocates memory object frees memory

• Object opens file object closes file

Why?
•Claiming and releasing resources at different levels is error-prone

• Forget to free memory memory leak

• Forget to allocate memory dangling pointer, seg fault

• Forget to close file inefficient use of a limited resource

• Forget to open file dangling pointer, seg fault

17

Resources in Assignment 3

Who allocates and frees the key strings in symbol table?

Potential options:
(1) Client allocates and frees strings

• SymTable_put() does not create copy of given string

• SymTable_remove() does not free the string

• SymTable_free() does not free remaining strings

(2) SymTable object allocates and frees strings
• SymTable_put() creates copy of given string

• SymTable_remove() frees the string

• SymTable_free() frees all remaining strings

Our choice: (2)

•With option (1) client could corrupt the SymTable object

(as described in a previous lecture)19

Resources in Assignment 3

Who allocates and frees the values in symbol table?

Reasonable (?) options:
(1) Client allocates and frees values

• SymTable_put() does not create copy of given value, yet client can’t corrupt data structure.

• SymTable_remove() does not free the value

• SymTable_free() does not free remaining values

(2) SymTable object allocates and frees values
• SymTable_put() needs more parameters: the size of the value and a

 function pointer to a function that will copy the value

 (or to use memcpy, or to do an awful hack and cast

 the value to a char* and copy byte-by-byte)

• SymTable_remove() frees the value

• SymTable_free() frees all remaining values

Our choice: (1) simpler interface, no search integrity risk, no copy cost
20

Passing Resource Ownership

Violations of expected resource ownership should be

noted explicitly in function comments

21

somefile.h

...

/* ...
 This function allocates memory for
 the returned object. You (the caller)
 own that memory, and are responsible
 for freeing it when you no longer
 need it. */
void *f();

…

Agenda

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

22

https://www.usno.navy.mil/USNO/time/master-clock/images/clockvaults.jpg

U.S. Naval Observatory Master Clock

https://www.usno.navy.mil/USNO/time/master-clock/images/clockvaults.jpg

Consistency

A well-designed module is consistent
•A function's name should indicate its module

• Facilitates maintenance programming

• Programmer can find functions more quickly

• Reduces likelihood of name collisions

• From different programmers, different software vendors, etc.

•A module's functions should use a consistent parameter order

• Facilitates writing client code

23

Consistency in string.h

/* string.h */

size_t strlen(const char *s);
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);
char *strcat(char *dest, const char *src);
char *strncat(char *dest, const char *src, size_t n);
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
char *strstr(const char *haystack, const char *needle);
void *memcpy(void *dest, const void *src, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
...

24

Are function names consistent?

Is parameter order consistent?

Consistency in symtable.h

SymTable_T SymTable_new(void);
void SymTable_free(SymTable_T oSymTable);
size_t SymTable_getLength(SymTable_T oSymTable);
int SymTable_put(SymTable_T oSymTable, const char *pcKey, const void *pvValue);
void *SymTable_replace(SymTable_T oSymTable, const char *pcKey, const void *pvValue);
int SymTable_contains(SymTable_T oSymTable, const char *pcKey);
void *SymTable_get(SymTable_T oSymTable, const char *pcKey);
void *SymTable_remove(SymTable_T oSymTable, const char *pcKey);
void SymTable_map(SymTable_T oSymTable,
 void (*pfApply)(const char *pcKey, void *pvValue, void *pvExtra),
 const void *pvExtra);

Are function names consistent?

Is parameter order consistent?

25

Let’s make List accord …

List
(-) Each function name doesn't begin with “List_”

(+) First parameter identifies List_T object
Oops,

let’s fix
that!

typedef struct List *List_T;

List_T new();

void insert(List_T p, int key);

void concat(List_T p, List_T q);

int nth_key(List_T p, int n);

void free(List_T p);

List (revised)

(+) Each function name begins with “List_”

(+) First parameter identifies List_T object26

typedef struct List *List_T;

List_T List_new();

void List_insert(List_T p, int key);

void List_concat(List_T p, List_T q);

int List_nth_key(List_T p, int n);

void List_free(List_T p);

Agenda

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

27

@srosinger3997

https://unsplash.com/@srosinger3997

Minimization

A well-designed module has a minimal interface
•Function declaration should be in a module's interface if and only if:

• The function is necessary for functionality, or

• The function is necessary for clarity of client code, or

• The function is necessary for efficiency of client code

Why?
•More functions ⇒ higher learning costs, higher maintenance costs

28

29

SymTable_contains(redundancy)?

Q: Assignment 3's interface has both SymTable_get() (which returns NULL if the key is

not found) and SymTable_contains() – is the latter necessary?

A. No – should be eliminated

B. Yes – necessary for functionality

C. Yes – necessary for efficiency

D. Yes – necessary for clarity

B

SymTable bindings can have

NULL values, but

SymTable_get() can’t

tell these apart from keys

that aren’t in the table.

30

Now hash this one out

Q: Assignment 3 has SymTable_hash() defined in symtablehash.c’s implementation, but

not the symtable.h interface. Is this good design?

A. No – should be in interface to

enable functionality

B. No – should be in interface to

enable clarity

C. Yes – should remain an

implementation detail

C

It is only ever used internally,

and only in a hash table

implementation.

Agenda

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

31

@hugojehanne

https://unsplash.com/@hugojehanne

Error Handling

A well-designed module detects and handles/reports errors

A module should:
•Detect errors

•Handle errors if it can; otherwise…

•Report errors to its clients

• A module often cannot assume what error-handling action its clients prefer

32

Handling Errors in C

C options for detecting errors
• if statement

• assert macro

C options for handling errors
•Write message to stderr

• Impossible in many embedded applications

•Recover and proceed

• Sometimes impossible

•Abort process

• Often undesirable

33

Reporting Errors in C

C options for reporting errors to client (calling function)
•Use function return value?

Awkward if return value has some other natural purpose

int div(int dividend, int divisor, int *quotient)
{
 if (divisor == 0)
 return 0;
 ...
 *quotient = dividend / divisor;
 return 1;
}
...
successful = div(5, 3, &quo);
if (!successful)
 /* Handle the error */

34

Reporting Errors in C

C options for reporting errors to client (calling function)
•Set global variable?

• Easy for client to forget to check

• Bad for multi-threaded programming

• Some standard C library functions set errno global variable

int successful;
...
int div(int dividend, int divisor)
{
 if (divisor == 0) {
 successful = 0;
 return 0;
 }
 successful = 1;
 return dividend / divisor;
}
...
quo = div(5, 3);
if (!successful)
 /* Handle the error */

35

Reporting Errors in C

C options for reporting errors to client (calling function)
•Use pointer parameter?

Awkward for client; must pass additional argument

int div(int dividend, int divisor, int *successful)
{
 if (divisor == 0) {
 *successful = 0;
 return 0;
 }
 *successful = 1;
 return dividend / divisor;
}
...
quo = div(5, 3, &successful);
if (!successful)
 /* Handle the error */

36

Reporting Errors in C

C options for reporting errors to client (calling function)
•Call assert macro?

• Asserts could be disabled

• Error terminates the process!

int div(int dividend, int divisor)
{
 assert(divisor != 0);
 return dividend / divisor;
}
...
quo = div(5, 3);

37

Reporting Errors in C

C options for reporting errors to client (calling function)

•No option is ideal

What option does

Java provide?

38

User Errors

Our recommendation: Distinguish between…

(1) User errors
• Errors made by human user

• Errors that “could happen”

• Example: Bad data in stdin

• Example: Too much data in stdin

• Example: Bad value of command-line argument

• Use if statement to detect

• Handle immediately if possible, or…

• Report to client via return value or pointer parameter

• Don’t use global variables

39

Programmer Errors

(2) Programmer errors
•Errors made by a programmer

•Errors that “should never happen”

•Example: pointer parameter should not be NULL, but is: this is a "mismatch"

between the caller and callee's contract/expectations/behavior.

•For now, use assert to detect and handle, as a user can't do anything about it

The distinction sometimes is unclear
•Example: Write to file fails because disk is full

•Example: Divisor argument to div() is 0

Default: user error
40

Error Handling in List

•This error-handling in List_insert violates our advice just now.

•How to fix it? Some choices:
• void List_insert (List_T p, int key, int *error);
• int List_insert (List_T p, int key);41

List_T List_new() { ... }

void List_insert (List_T p, int key)
{
 struct Node *n;
 n = malloc(sizeof(*n));
 assert(n != NULL);
 n->key=key; n->next=p->first; p->first=n;
}

void List_concat(List_T p, List_T q) { ... }

int List_nth_key(List_T p, int n) { ... }

void List_free(List_T p) { ... }

Error Handling in List

typedef struct List *List_T;

List_T List_new();

void List_insert(List_T p, int key);

void List_concat(List_T p, List_T q);

int List_nth_key(List_T p, int n);

void List_free(List_T p);

Operation nth_key(p,n), if p represents σ1∙i

∙σ2 where the length of σ1 is n, returns i ;

otherwise (if the length of the string

represented by p is ≤ n), returns an

arbitrary integer.

• And what about the curious specification for List_nth_key

• How to do better? Some choices:

• int List_nth_key (List_T p, int n, int *success);

• Or, perhaps more consistent with other bad parameter handling,
add the interface function int List_length(List_T p); then:

 Operation List_nth_key(p,n): if p represents σ1∙i ∙σ2 where the length of σ1 is n,
 returns i ; otherwise (if the length of the string represented by p is ≤n),
 fails with an assertion failure or abort().

43

Agenda

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

44

@jesseramirezla

https://unsplash.com/@jesseramirezla

Establishing Contracts

A well-designed module establishes contracts
•A module should establish contracts with its clients

•Contracts should describe what each function does, especially:

• Meanings of parameters

• Work performed

• Meaning of return value

• Side effects

Why?
•Facilitates cooperation between multiple programmers

•Assigns blame to contract violators!

• If all your functions have precise contracts and implement them

correctly, then the bug must be in someone else’s code!

How? Comments in module interface
45

Contracts in List

Comment defines contract:
• Meaning of function’s parameters

• p is the list to be operated on; n is the index of an element

• Obligations of caller

• make sure n is in range; (implicit) make sure p is a valid list

• Work performed

• Return the nth element.

• Meaning of return value

• Side effects (none, by default)

/* list.h */

/* Return the nth element of the list p, if it exists. Otherwise
(if n is negative or >= the length of the list), abort the
program. */

int List_nth_key(List_T p, int n);

46

Contracts in List

Comment defines contract:
• Meaning of function’s parameters

• p is the list to be queried; n is the index of an element; success is an error flag

• Obligations of caller

• (implicit) make sure p is a valid List

• Work performed

• Return the nth element; set success appropriately

• Meaning of return value

• Side effects: set success

/* list.h */

/* If 0 <= n < length(p), return the nth element of the list p and set success to
1. Otherwise (if n is out of range) return 0 and set success to 0. */

int List_nth_key(List_T p, int n, int *success);

47

One more “contractual” consideration

Ron Minsky '94

Your caller won't break your contract

if you make it impossible to do so!
•List lengths are always non-negative, so

perhaps n should be unsigned:

int List_nth_key(List_T p, size_t n, int *success);

/* list.h */

/* If 0 <= n < length(p), return the nth element of the list p and set success to
1. Otherwise (if n is out of range) return 0 and set success to 0. */

int List_nth_key(List_T p, int n, int *success);

48

Graphical user interface, text, application

Description automatically generated

https://twitter.com/yminsky/status/1034947939364425731

Agenda

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

49

@rossjoyner

https://unsplash.com/@rossjoyner

Strong Cohesion

A well-designed module has strong cohesion

•A module's functions should be strongly related to each other

Why?
•Strong cohesion facilitates abstraction

50

Strong Cohesion Examples

51

(+) All functions are related to the encapsulated data

List

(+) Most functions are related to string handling

(-) Some functions are not related to string handling: memcpy, memcmp…

(+) But those functions are similar to string-handling functions

string.h

(+) Most functions are related to I/O

(-) Some functions don’t do I/O: sprintf, sscanf
(+) But those functions are similar to I/O functions

stdio.h

(+) All functions are related to the encapsulated data

SymTable

Agenda

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

52

Weak Coupling

A well-designed module has weak coupling
•Module should be weakly connected to other modules in program

•Interaction within modules should be more intense than among modules

Why? Theoretical observations
•Maintenance: Weak coupling makes program easier to modify

•Reuse: Weak coupling facilitates reuse of modules

Why? Empirical evidence
•Empirically, modules that are weakly coupled have fewer bugs

Examples (different from previous)…

53

Weak Design-time Coupling Example

run()

move()

getLat()

getLon()

getAlt()

setLat()

Simulator

Airplane

• Simulator module calls

many functions in Airplane

• Strong design-time coupling

Function call

setLon()

setAlt()

run()

Simulator

• Simulator module calls

few functions in Airplane

• Weak design-time coupling

getLat()

getLon()

getAlt()

setLat()

Airplane

setLon()

setAlt()

move()

54

Maintenance-time Weak Coupling Example

f2() f3()

Client MyModule

• Maintenance programmer

changes Client and MyModule

together frequently

• Strong maintenance-time

coupling

f1() f2()

f3()

Client MyModule

• Maintenance programmer

changes Client and MyModule

together infrequently

• Weak maintenance-time

coupling

f1()

Changed together often

56

Achieving Weak Coupling

Achieving weak coupling could involve refactoring code:

•Move code from client to module (shown)

•Move code from module to client (not shown)

•Move code from client and module to a new module (not shown)

57

Summary

A good module:
•Encapsulates data

•Manages resources

•Is consistent

•Has a minimal interface

•Detects and handles/reports errors

•Establishes contracts

•Has strong cohesion

•Has weak coupling

59

	Slide 1: Modules and Interfaces
	Slide 2: Goals of this Lecture
	Slide 3: Agenda
	Slide 4: Encapsulation + Information Hiding
	Slide 5: Barbara Liskov, a pioneer in CS
	Slide 6: Abstract Data Type (ADT)
	Slide 7: Encapsulation with ADTs (wrong!)
	Slide 8: Encapsulation with ADTs (right!)
	Slide 9: Specifications
	Slide 10: Reasoning About Client Code
	Slide 11: Object-Oriented Thinking
	Slide 12: Concrete Question: Abstract Data Type?
	Slide 13: Living with ADTs
	Slide 14: Function Pointers
	Slide 16: Agenda
	Slide 17: Resource Management
	Slide 19: Resources in Assignment 3
	Slide 20: Resources in Assignment 3
	Slide 21: Passing Resource Ownership
	Slide 22: Agenda
	Slide 23: Consistency
	Slide 24: Consistency in string.h
	Slide 25: Consistency in symtable.h
	Slide 26: Let’s make List accord …
	Slide 27: Agenda
	Slide 28: Minimization
	Slide 29: SymTable_contains(redundancy)?
	Slide 30: Now hash this one out
	Slide 31: Agenda
	Slide 32: Error Handling
	Slide 33: Handling Errors in C
	Slide 34: Reporting Errors in C
	Slide 35: Reporting Errors in C
	Slide 36: Reporting Errors in C
	Slide 37: Reporting Errors in C
	Slide 38: Reporting Errors in C
	Slide 39: User Errors
	Slide 40: Programmer Errors
	Slide 41: Error Handling in List
	Slide 43: Error Handling in List
	Slide 44: Agenda
	Slide 45: Establishing Contracts
	Slide 46: Contracts in List
	Slide 47: Contracts in List
	Slide 48: One more “contractual” consideration
	Slide 49: Agenda
	Slide 50: Strong Cohesion
	Slide 51: Strong Cohesion Examples
	Slide 52: Agenda
	Slide 53: Weak Coupling
	Slide 54: Weak Design-time Coupling Example
	Slide 56: Maintenance-time Weak Coupling Example
	Slide 57: Achieving Weak Coupling
	Slide 59: Summary

