-

COS 217: Introduction to Programming Systems

Data Structures

“Every program depends on
algorithms and data structures,
but few programs depend on the
invention of brand new ones.”

- Kernighan & Pike

® PRINCETON UNIVERSITY

https://unsplash.com/@mrthetrain

-

Reminder — Midterm Exam!

This Wednesday - October 9, 10:00am - 10:50am
e 1:30 Precepts (PO5 and PO06): Friend 004

e 3:30 Precepts (PO7 and P10): Friend 008

* All other precepts: Friend 101

Review Session: Today! 7:30pm - 8:30pm in CS Building 104.

Info: https://www.cs.princeton.edu/courses/archive/fall24/cos217/examl.php

J

https://www.cs.princeton.edu/courses/archive/fall24/cos217/exam1.php

-
Goals of this Lecture

Help you learn (or refresh your memory) about:
e Common data structures: linked lists and hash tables

Why? Deep motivation:
e Common data structures serve as “high level building blocks”
* A mature programmer:
e Rarely creates programs from scratch
» Often creates programs using high level building blocks

Why? Shallow motivation:
* Provide background pertinent to Assignment 3
e ... especially for those who haven’t taken COS 226
e ... especially? for those who skipped COS 126

-

Symbol Table Data Structure

Goal: maintain a collection of key/value pairs
* For these slides, each key is a string; each value is an int
* Lookup binding by key, get value back
e Unknown number of key-value pairs

Examples
* (student name, class year)
e (“Andrew Appel”, 81), (“Jen Rexford”, 91), (“JP Singh”, 87)
* (baseball player, number)
e (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
* (variable name, value)
e (“maxLength”, 2000), (“i”, 2000), (“j”, -10)

-

Agenda

Linked lists
Hash tables
Hash table issues

Symbol table key ownership

-

Linked List Data Structure (for a Symbol Table)

struct Node {
const char *key;
int value;
struct Node *next;

|5

struct List {
struct Node *first;

Your Assignment 3

data structures will

be more general and
perhaps more elaborate

Z ?TGlelh

gQ

struct
struct Node

List

-

Linked List Data Structure

struct Node { :
const char *key; Your Assignment 3

int value; data structures will
struct Node *next; be more general and

Z perhaps more elaborate

struct List {
struct Node *first;

|5

Really this is the

struct struct address at which

struct Node Node a string with

List contents “Ruth”
resides

-

Preview of A3/Lecture+2: Encapsulation (wrong!) A

list.h

| Nothing stops a client = : —
from doing this! <Mde {const char* key; int value; struct Node *next;}; >
sfruct List {struct Node *first;}; < If you put the

representation here,
then it's not an

abstract data type,

it’s just a data type.

struct List *new();
p->first = NULL; void insert(struct List *p, const char* key, int value);
void concat(struct List *p,
struct List *q);
int nth_value(struct List *p, int n);

client.c list_linked.c

#include "list.h" <: >#include "list.h"

struct List *new()
{
struct List *p;
p = calloc(1, sizeof(*p));
if(p == NULL) { cry(); return NULL; }

insert(p,"six",6); return p;
insert(p,"sept",7); }
insert(qg,"cing",5);
concat(p,q); void insert(struct List *p, const char* key, int value) {...}
concat(q,p);
return nth_value(q,1); void concat(struct List *p, struct List *q){ ... }

8 }

| int nth_value(struct List *p, intn) {... }

-

Preview of A3/Lecture+2: Encapsulation (right!)

Now this code won't
compile!

p->first = NULL;

client.c

list.h

struct List;
typedef struct List *List_T;

Including only the
declaration in header file

List_T new()) enforces the
Xg:g |C r:)snecratﬁc I(.Il-sit_;l'Tpé)lconst char* key, int value); abstraction: it keeps
List_T q); clients from accessing
int nth_value(List_T p, int n); fields of the struct,
allowing implementation
to change

list_linked.c

#include "list.h"

ert(p,"six",6);
insert(p,"sept",7);
insert(qg,"cing",5);
concat(p,q);
concat(q,p);

return nth_value(q,1);

<: >#include "list.h" \

struct Node {const char *key; int value; struct Node *next;};
struct List {struct Node *first;};

struct List *new()

{
struct List *p;
p = calloc(1, sizeof(*p));
if(p == NULL) {cry(); return NULL;}
return p;

}

void insert(struct List *p, const char* key, int value) {...}

void concat(struct List *p, struct List *q){ ... }
int nth_value(struct List *p, intn) {... }

-

Accessing a Linked List

10

struct struct

Struct Node Node
List

S B2 E5E

-

Linked List Algorithms

11

Create
* Allocate List structure; set first to NULL
e Performance: O(1) = fast

Add (no check for duplicate key required)
* Insert new node containing key/value pair at front of list
e Performance: O(1) = fast

Add (check for duplicate key required)
* Traverse list to check for node with duplicate key
* Insert new node containing key/value pair into list
e Performance: O(n) = slow

-
Linked List Algorithms

Search
* Traverse the list, looking for given key
e Stop when key found, or reach end
e Performance: ??7

12

-
|> iIClicker Question

Q: How fast is searching for a key in a linked list?

A. Always fast - O(1) Not well specified:

B. Always slow - O(n) Depends on order of inserts, queries, etc.
C. On average, fast Best answer is D.

D. On average, slow

13

-

Linked List Algorithms

14

Search
* Traverse the list, looking for given key
e Stop when key found, or reach end
e Performance: O(n) = slow

Free
* Free Node structures while traversing
* Free List structure
e Performance: O(n) = slow

-
Agenda

Linked lists
Hash tables
Hash table issues

Symbol table key ownership

15

[
HaS h Ta ble Data Stru CtU re (For COS 226 alumni - hashing with separate chaining)

Really this is the

)) address at which
Array of linked lists “Buth” resides

enum { BUCKET_COUNT = 1024 };

struct

struct Binding { Bi nd|
const char *key;
int value; StrUCt
struct Binding *next; Bindi ng

|5

struct Table {
struct Binding *buckets|[BUCKET _COUNT];

Iy

-

Hash Table Data Structure

0| +— -
@\Bmdlng

BT Bucket

?[\

BUCKET_COUNT-1| ——

Hash function maps given key to an integer
Mod integer by BUCKET _COUNT to determine proper bucket

17

-

Hash Table Example

Example: BUCKET_COUNT =7

Add (if not already present) bindings with these keys:
* the, cat, in, the, hat

18

-

Hash Table Example (cont.)

a4

First key: “the
e hash(“the”) =965156977; 965156977 % 7 =1

Search buckets[1] for binding with key “the”; not found

ool WN - O

19

-

Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]

| the

ool WN - O

-

Hash Table Example (cont.)

7

Second key: “cat
e hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found

| the

ool WN - O

21

-

Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

0

1 | the

2 X

3 \ cat
g X
6

22

-

Hash Table Example (cont.)

Third key: “in”
e hash(“in”) = 6888005; 6888005% 7 =5

Search buckets[5] for binding with key “in”; not found

0

1 | the

2 X

3 \ cat
g X
6

23|

-

Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]

0

1 | the

2 X

3 \ cat

4

5] in X
24 6 X

-
Hash Table Example (cont.)

7

Fourth word: “the
J hash(“the”) =965156977; 965156977 % 7 =1

Search buckets[1] for binding with key “the”; found it!
* Don’t change hash table

0

1 | the

2 X

3 \ cat

4

5] in X
25| 6 X

-
Hash Table Example (cont.)

Fifth key: “hat”
e hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found

0

1 | the

2 X

3 \ cat

4

5 | in X
26| 6 X

-

Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]
e At front or back?

0

1 | the

2 X

3 | hat cat

4 —

5] in X
27 ° X

-

Hash Table Algorithms

28|

Create
e Allocate Table structure; set each bucket to NULL
e Performance: O(1) = fast

Add
* Hash the given key
* Mod by BUCKET_COUNT to determine proper bucket
* Traverse proper bucket to make sure no duplicate key
* Insert new binding containing key/value pair into proper bucket
e Performance: ?77?

-
|> iIClicker Question

29

Q: How fast is adding a key to a hash table?

A. Always fast

B. Usually fast, but depends on how many
keys are in the table

C. Usually fast, but depends on how many
keys hash to the same bucket

D. Usually slow

E. Always slow

C

If bindings are spread across
buckets, this is fast
(though B is a concern).

Worst case: everything hashes
to the same bucket - O(n)

-

Hash Table Algorithms

30!

Search
* Hash the given key
* Mod by BUCKET_COUNT to determine proper bucket
e Traverse proper bucket, looking for binding with given key
e Stop when key found, or reach end
e Performance: Usually O(1) = fast

Free
* Traverse each bucket, freeing bindings
* Free Table structure
e Performance: O(n) = slow

-

Agenda

31

Linked lists
Hash tables
Hash table issues

Symbol table key ownership

-

How Many Buckets?

32

Many!
* Too few = large buckets = slow add, slow search

But not too many!
* Too many = memory is wasted

This is OK:

BUCKET_COUNT-1

-

What Hash Function?

33

Should distribute bindings across the buckets well
 Distribute bindings over the range 0, 1, ..., BUCKET_COUNT-1
 Distribute bindings evenly to avoid very long buckets

This is not so good:

BUCKET_COUNT-1

What would be the worst
nossible hash function?

-

How to Hash Strings?

34

Simple hash schemes don't distribute the keys evenly
e Number of characters, mod BUCKET _COUNT
e Sum the numeric codes of all characters, mod BUCKET _COUNT

A reasonably good hash function:

* Weighted sum of characters s; in the string s
e (Za's;) mod BUCKET_COUNT
e Best if a and BUCKET_COUNT are relatively prime (i.e., their GCD is 1)

° e.g.,a=65599, BUCKET_COUNT = 1024

-
How to Hash Strings?

A bit of math, and translation to code, yields:

-

Agenda

36|

Linked lists
Hash tables
Hash table issues

Symbol table key ownership

-

How to Protect Keys?

37

Suppose a hash table function Table_add() contains this code:

-

How to Protect Keys?

38

Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";

Table_add(t, k, 3);

Ruth\0

-

How to Protect Keys?

39

Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";

Table_add(t, k, 3)@

strcpy(k, "Gehrig");

Gehrig\0

k is REALLY &K[O]!

What happens if the
client searches t for
“‘Ruth”? For "Gehrig"?

-

How to Protect Keys?

40|

Solution: Table_add() saves a defensive copy of the given key

void Table _add(struct Table *t, const char *key, int value)
{ ..
struct Binding *p =

(struct Binding®*)malloc(sizeof(struct Binding));
p->key = (const char*)malloc(strlen(key) + 1);
strcpy((char*)p->key, key);

What is missing from
this code that you
hould have in youys?

Why add 17

-

How to Protect Keys?

41

Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";

Table_add(t, k, 3);

Ruth\0

-

How to Protect Keys?

42

Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";

Table_add(t, k, 3);
strcpy(k, "Gehrig");

Hash table is
not corrupted!

Gehrig\0

Ruth\0

-
Who Owns the Keys?

Then the hash table owns its keys
* Thatis, the hash table allocated the memory in which its keys reside

e Table_remove() function must also free the memory in which the key resides,
not just the binding containing the key

43|

-

Summary

44

Common data structures and associated algorithms
e Linked list
* (Maybe) fast add
e Slow search
* Hash table
* (Potentially) fast add
* (Potentially) fast search
e Very common

Hash table issues
* (Initial) Bucket array size
* Hashing algorithms

Symbol table concerns
* Key ownership

	Slide 1: Data Structures
	Slide 2: Reminder — Midterm Exam!
	Slide 3: Goals of this Lecture
	Slide 4: Symbol Table Data Structure
	Slide 5: Agenda
	Slide 6: Linked List Data Structure (for a Symbol Table)
	Slide 7: Linked List Data Structure
	Slide 8: Preview of A3/Lecture+2: Encapsulation (wrong!)
	Slide 9: Preview of A3/Lecture+2: Encapsulation (right!)
	Slide 10: Accessing a Linked List
	Slide 11: Linked List Algorithms
	Slide 12: Linked List Algorithms
	Slide 13: iClicker Question
	Slide 14: Linked List Algorithms
	Slide 15: Agenda
	Slide 16: Hash Table Data Structure (For COS 226 alumni – hashing with separate chaining)
	Slide 17: Hash Table Data Structure
	Slide 18: Hash Table Example
	Slide 19: Hash Table Example (cont.)
	Slide 20: Hash Table Example (cont.)
	Slide 21: Hash Table Example (cont.)
	Slide 22: Hash Table Example (cont.)
	Slide 23: Hash Table Example (cont.)
	Slide 24: Hash Table Example (cont.)
	Slide 25: Hash Table Example (cont.)
	Slide 26: Hash Table Example (cont.)
	Slide 27: Hash Table Example (cont.)
	Slide 28: Hash Table Algorithms
	Slide 29: iClicker Question
	Slide 30: Hash Table Algorithms
	Slide 31: Agenda
	Slide 32: How Many Buckets?
	Slide 33: What Hash Function?
	Slide 34: How to Hash Strings?
	Slide 35: How to Hash Strings?
	Slide 36: Agenda
	Slide 37: How to Protect Keys?
	Slide 38: How to Protect Keys?
	Slide 39: How to Protect Keys?
	Slide 40: How to Protect Keys?
	Slide 41: How to Protect Keys?
	Slide 42: How to Protect Keys?
	Slide 43: Who Owns the Keys?
	Slide 44: Summary

