-

COS 217: Introduction to Programming Systems

Building Multifile Programs with make

sanCheza™ s iR N

-

® PRINCETON UNIVERSITY



https://unsplash.com/@martinsanchez

-

But first, this programming alert!

Yes, there’s a midterm.

Oct 9 10:00 - 10:50am, room TBD.
(2 weeks from Today!)

On paper. Closed book. 1 one-sided study sheet allowed.

Covers through Wednesday Oct 2. Exam page available now!



https://unsplash.com/@helloimnik
https://unsplash.com/@helloimnik

-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros




-

Multi-File Programs

intmath.h (interface) intmath.c (implementation) testintmath.c (client)

#ifndef INTMATH_INCLUDED
#define INTMATH_INCLUDED
int gcd(int i, int j);

int lcm(int i, int j);

#endif

ttinclude "intmath.h"

int gcd(int i, int j)
{

int temp;
while (j !=0) {
temp=i% j;
i=J
j =temp;
}
return i;
}
int lcm(int i, int j)

{

return (i / ged(i, j)) * j;

}

#include "intmath.h"
#include <stdio.h>

int main(void)
{
inti, j;
printf("Enter the first integer:\n");
scanf("%d", &i);
printf("Enter the second integer:\n");
scanf("%d", &j);
printf("Greatest common divisor: %d.\n",
ged(i, j));
printf("Least common multiple: %d.\n",
lem(i, j);
return O;

}

Which
stage?

Note: intmath.h is
#included into intmath.c
and testintmath.c




-

Motivation for Make (Part 1)

Building testintmath, approach 1 (“shortcut version”):

e Use one gcc217 command to
preprocess, compile, assemble, and link

testintmath.c

intmath.h

N

intmath.c

/

gcc217 testintmath.c intmath.c —o testintmath

N1

testintmath




nttps://xkecd.com/303/

THE #7 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.

HEY! GETBACK.
TOWORK! ~/
3 =f cnripru@
Q I

—@, CARRY ON.



https://xkcd.com/303/

-

Motivation for Make (Part 2)

Building testintmath, approach 2:

* Preprocess, compile, assemble to produce .o files
e Link to produce executable binary file

Recall: -c option
tells gcc217 to omit link

N

testintmath.c intmath.h \‘iit\math.c
gcc2 m gce27 —gintmath.c

testintmath.o intmath.o

gcc217 testintmath.o intmath.o —o testintmath

A

testintmath




-

Partial Builds

Approach 2 allows for partial builds

 Example: Change intmath.c
e Must rebuild intmath.o and testintmath
e NO need to rebuild testintmath.o

If program contains many files, could save hours of build/test time

testintmath.c intmath.h

7

gcec217 —c testintmat{\

gcc217 —c intmath.c

N

testintmath.o

Y

intmath.o

gcc217 testintmath.o intmath.o —o testintmath

A

testintmath




-
Partial Builds

However, changing a .h file can be more dramatic

e Example: Change intmath.h
e intmath.h is #include’d into testintmath.c and intmath.c
e Must rebuild testintmath.o, intmath.o, and testintmath

testintmath.c intmath.h intmath.c
\ \/\ B

gcc217 —c testintmath.c \ gcc217 —c intmath.c

testintmath.o intmath.o

gcc217 testintmath.o intmath.o —o testintmath

o a4

testintmath




-

Wouldn't It Be Nice If...

10

Observation
e Doing partial builds manually is tedious and error-prone
e Wouldn’t it be nice if there were a tool...

How would the tool work?

e [nput:
* Dependency graph (as shown previously)
e Specifies file dependencies
e Specifies commands to build each file from its dependents
e Date/time stamps of files

* Algorithm:

e [ffile B depends on A and date/time stamp of A is newer than date/time stamp of B,
then rebuild B using the specified command

| That's makel




-

Obligatory Princeton Context

Stuart Feldman '68

e Chief Scientist at Schmidt Futures

e Former President of ACM
« AAAS, IEEE, and ACM fellow

Oy - CMDIT

e Board Chair of-.

Created make at
Bell Labs in 1976

Fostering Innovation Through Inclusion



https://cmd-it.org/about/

-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros




-

Make Command Syntax

13

Command syntax
S man make
SYNOPSIS
make [-f makefile] [options] [targets]

e makefile
* Textual representation of dependency graph
e Contains dependency rules
e Default name is makefile, then Makefile

e target
* What make should build

e Usually: .o file or executable binary file
e Default is first one defined in makefile




-

Dependency Rules in Makefile

14

Dependency rule syntax

target: dependencies
<tab>command

e target: the file you want to build
e dependencies (aka prerequisites):
the files needed to build the target
e command (aka recipe): what to execute to build the target

Dependency rule semantics
 Build target if it doesn’t exist
* Rebuild target iff it is older than at least one of its dependencies
e Use command to do the build

e+ Work recursively; examples illustrate...




-

Make gotcha: tab means tab not k spaces

15

<tab>command

The first character of the line with the command must be an actual
tab character, ASCIl character 9. Cryptic error for failing to do so:

*** missing separator. Stop.

Feldman explains the genesis:
"Within a few weeks of writing Make, | already had a dozen friends who
were using it" ... "l didn't want to upset them" ... "So instead | wrought
havoc on tens of millions."
—Cobbled from Brian Kernighan's UNIX: A History and a Memoir and Michael Stillwel!



https://beebo.org/haycorn/2015-04-20_tabs-and-makefiles.html

-

Makefile Version 1

16

Makefile

testintmath: testintmath.o intmath.o

gcc217 testintmath.o intmath.o —o testintmath

testintmath.o: testintmath.c intma
gcc217 -c testintmath.c

intmath.o: intmath.c intmath.h
gcc217 -c intmath.c

.h

testintmath.c

AN

\

infmath.h

.

gcc217 —c testintmath c \

intmath.c

/

testintmath.o

gcc217 —c intmath.c

m

intmath.o

gcc217 testintmath.o intmath.o —o testintmath

\/

testintmath

/




-

Makefile Version 1

17

Makefile

testintmath: testintmath.o intmath.o
gcc217 testintmath.o intmath.o —o testintmath

testintmath.o: testintmath.c intmath.h
gcc217 -c testintmath.c

intmath.o: intmath.c intmath.j
gcc217 -c intmath.c

—

_—

/
testintmath.c intmath.h N

\ intmath.c
N\ /
gcc217 —c testintmath.c gcc217 —c intmath.c
testintmath.o intmath.o
\

gcc217 testintmath.o intmath.o —o testintmath

\/

testintmath




-

Version 1 in Action

18

Recur! ]

Recur!

Recur! No target, bu}f\l%ées%?

Recur! No target, but file exists

Recur! No target, but fil¢ exists—

Recur! No target, but file exists

intmath.o not found. Build!

te;ﬁqt/math.o p@/u((/ﬂd—l%wﬁ'—

testintmath: testin{mayﬁ.o in);ﬁnt 7\ "

gcc217 testintmath.?’int?é -0 testipzt’math X <« |

testintmath.o: testi h.c intmath.h
4cc2 17 -c testintm/zfch.

testintmath not found.
Now finally produce testintmath!

intmath.o: intmuj_,:_i_n_tm_a_th__l

4cc217 -c intmath.c

S make testintmath
gcc217 -c testintmath.c
gcc217 -c intmath.c

-0 testintmath

gcc217 testintmath.o intmath.o




-

Version 1 in Action

19

At first, to build testintmath
make issues all three gcc
commands

/

v

Use the touch command to
change the date/time stamp
of intmath.c

cc217 -c testintmath.c
cc217 -c intmath.c

S make testintmath
cc217 testintmath.o intmath.o -o testi ath

-

S touch intmath.c

S make testintmath
cc217 -c intmath.c

cc217 testintmath.o intmath.o -o testintmath

S make testintmath
make: “testintmath'is up to date.

S make
make: “testintmath'is up to date.
A\

N

make does a partial build

make notes that the specified

The default target is testintmath,
the target of the first dependency rule

target is up to date




-
I> make Up your mind

Q: If you were making a Makefile for this program,
what should a.o depend on?

d.h

v
A. a c.h a.h

\L
B. a.c a.c b.c
C. a.ch.c ai bi
D. a.hc.hd.h \E/

200 E. a.ca.hc.hd.h




-
Makefile Guidelines

d.h
c.i a.h
T—
a.c b.c
a.o bi a.o:a.ca.hc.hd.h

-

In a proper Makefile, each object file:

e Depends upon its .c file
e Does not depend upon any other .c file
21 e Does not depend upon any .o file

\ e Depends upon any .h files that are #included directly or indirectly )




: I'\ building understanding
”

22

Q: If you were making a Makefile for this program,
what should a depend on?

d.h

c.h a.h
2.0 b.o a'I
a.o b.oa.ch.c a.o

a.c b.ca.h c.h d.h

Mmoo W P

a.0 b.oa.cbh.ca.hc.nhd.h

2.0 b.0 a.h c.h d.h \\Tj//




-

Makefile Guidelines

23|

d.h
'
c.h a.h

In a proper Makefile, each executable:

* Depends upon the .o files that comprise it
* Does not depend upon any .c files
e Does not depend upon any .h files

a:a.ob.o




-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros




-
Non-File Targets (aka “pseudotargets”)

Take advantage that make doesn't check that a target actually gets built to add useful shortcuts!

* (Good practice: pseudotargets should be declared .PHONY so they are built even if target exists

7 ”

Commonly defined non-file targets (but “all”, “clean”, "clobber” are not syntactically special):
e make all: create the final executable binary file(s), often the first target listed in the Makefile
* make clean: delete all .o files, executable binary file(s)
* make clobber: delete all .o files, executable(s), and assorted development cruft (e.g., Emacs backup files)

all: testintmath

clobber: clean
rm -f *~ \#*\#

clean:
rm -f testintmath *.o
.PHONY: all clobber clean

Commands in the example
e rm —f: remove files without querying the user
25 * Files ending in ‘~" and starting/ending in ‘# are Emacs backup and autosave files




(

Makefile Version 2




-
Version 2 in Action

make observes that “clean” target
doesn’t exist; attempts to build it
by issuing “rm” command

S make dean A Same idea here, but

rm -f testintmath *.0 “clobber” depends upon “clean”
|3 make clobber
:

m -f testintmath *.o
rm -f *~ \#*\#

S make all
cc217 -c testintmath.c
cc217 -cintmath.c
cc217 testintmath.o intmath.o -o testintmath

S make

make: Nothing to be done for “all'. ‘\
“all” depends upon

“testintmath”

(13

all” is the default target,
27 since it comes first in file




-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros




-

Macros

29|

make has a macro facility
e Performs textual substitution
e Similar to C preprocessor’s #define

Macro definition syntax

macroname = macrodefinition
e make replaces S(macroname) with macrodefinition in remainder of Makefile

Example: Make it easy to change (or swap) build commands
CC=gcc217
YACC = bison -d -y
#YACC = yacc -d

Example: Make it easy to change build flags
CFLAGS = -D NDEBUG -O




(

Makefile Version 3




-

Version 3 in Action

Same as Version 2




-
More Makefile Gotchas

Beware:

e Bears repeating: each command (second line of each
dependency rule) must begin with a tab character,
not spaces - configure your editor accordingly!

e Use the rm —f command with caution
(More generally, be careful about automatically doing anything you can’t undo!)

* Have something sensible as your default command
(Users are likely to just type make , out of habit or ignorance.)

32



https://unsplash.com/@leslounie

-

Making Makefiles

In this course

e Create Makefiles manually
e Perhaps start from the Makefiles from this lecture?

Beyond this course

e Can use tools to generate Makefiles
e See mkmf, among others

e Copy-paste-edit forever!

33




-

Advanced: Automatic Variables

34

make has wildcard matching for generalizing rules
e make has “pattern” rules that use % in targets and dependencies
* make has variables to fill in the "pattern” in commands
e S@ :the target of the rule that was triggered
e S<:the first dependency of the rule
e S?:all the dependencies that are newer than the target
e SA:all the dependencies

Examples:
testintmath: testintmath.o intmath.o
S(CC) S(CFLAGS) S -0 S@
%.0: %.c intmath.h
S(CC) S(CFLAGS) -c S<

Not required (and potentially confusing!), but common.
We'll never ask you to write these.




-

Advanced: Implicit Rules

35

make has implicit rules for compiling and linking C programs

e make knows how to build x.o from x.c
» Automatically uses $(CC) and $(CFLAGS)

e make knows how to build an executable from .o files
e Automatically uses $(CC)

make has implicit rules for inferring dependencies
e make will assume that x.0 depends upon x.c

Not required (and almost certainly confusing).
We’ll ask you never to write these! (cf. previous)




-
Makefile Version 4

testintmath.o: testintmath.c intmath.h intmath.o: intmath.c intmath.h
S(CC) S(CFLAGS) —c intmath.c S(CC) S(CFLAGS) —c intmath.c

testintmath.o: testintmath.c intmath.h intmath.o: intmath.c intmath.h
testintmath.o: intmath.h intmath.o: intmath.h

# Macros testintmath: testintmath.o intmath.o

CC = gcc217 S(CC) testintmath.o intmath.o —o testintmath

CFLAGS = ;

# Dependency rules for non-file targets testintmath: testintmath.o intmath.o

all: testintmath

clobber: clean
rm -f *~ \#*\#

clean;
rm -f testintmath *.o
# Dependency rules for file targets ProgreSSIVe |y te rSer b Ut
o [ more confusing. Just don't.

intmath.o: intmath.c intmath.h




-

Implicit Rule Gotcha

37

Beware:

* To use an implicit rule to make an executable,
the executable must have the same name as one of the .o files

Correct:

Won't work:

myprog: myprog.o someotherfile.o

myprog: somefile.o someotherfile.o

v
x




-

Make Resources

38

GNU make nttp://www.gnu.org/software/make/manual/make.html

C Programming: A Modern Approach
(King) Section 15.4



http://www.gnu.org/software/make/manual/make.html

	Slide 1: Building Multifile Programs with make
	Slide 2: But first, this programming alert! 
	Slide 3: Agenda
	Slide 4: Multi-File Programs
	Slide 5: Motivation for Make (Part 1)
	Slide 6: https://xkcd.com/303/
	Slide 7: Motivation for Make (Part 2)
	Slide 8: Partial Builds
	Slide 9: Partial Builds
	Slide 10: Wouldn’t It Be Nice If…
	Slide 11: Obligatory Princeton Context
	Slide 12: Agenda
	Slide 13: Make Command Syntax
	Slide 14: Dependency Rules in Makefile
	Slide 15: Make gotcha: tab means tab not k spaces
	Slide 16: Makefile Version 1
	Slide 17: Makefile Version 1
	Slide 18: Version 1 in Action
	Slide 19: Version 1 in Action
	Slide 20: make up your mind
	Slide 21: Makefile Guidelines
	Slide 22:   building understanding
	Slide 23: Makefile Guidelines
	Slide 24: Agenda
	Slide 25: Non-File Targets (aka “pseudotargets”)
	Slide 26: Makefile Version 2
	Slide 27: Version 2 in Action
	Slide 28: Agenda
	Slide 29: Macros
	Slide 30: Makefile Version 3
	Slide 31: Version 3 in Action
	Slide 32: More Makefile Gotchas
	Slide 33: Making Makefiles
	Slide 34: Advanced: Automatic Variables
	Slide 35: Advanced: Implicit Rules
	Slide 36: Makefile Version 4
	Slide 37: Implicit Rule Gotcha
	Slide 38: Make Resources

