
COS 217: Introduction to Programming Systems

Pointers, Arrays, and Strings

POINTERS

2

Warm-up: Java references

class Cell {

 public int x;

 public Cell(int v){ x=v; }

}

static void negate(Cell c) {

 c.x = -c.x;

}

…

Cell c = new Cell(2);

negate(c);

System.out.println(c.x);

static void negate(int x) {

 x = -x;

}

…

int x = 2;

negate(x);

System.out.println(x);
3

vs

Pointers in C

So… what’s a pointer?

• A pointer is a variable

• Its value is a memory location

• “Dereference” (follow) the pointer to read/write

the value at that location

Why is that a good idea?

• Used to implement data structures and access dynamically allocated memory

• Avoid the cost of copying data

• Parameters to functions are copied; but handy to be able to modify value

4

@rbw500

https://unsplash.com/@rbw500

Straight to the Point

Pointer types are target dependent

• Example: “int *pi;” – declares pi to be a pointer to an int

• We’ll see “generic” pointers later

Pointer values are memory addresses

• … so size is architecture-dependent – 8 bytes on ARMv8

• NULL macro in stddef.h for special pointer guaranteed

not to point to any variable

Pointer-specific operators

• Address-of operator (&) – creates a pointer

• Dereference operator (*) – follows a pointer

Other pointer operators

• Assignment operator: =

• Relational operators: ==, !=, >, <=, etc.

• Arithmetic operators: +, –, ++, –=, !, etc.
5

dLookSay

pd

0 k

k+4

pi

k+4

k+12

k+20

iCyclic 142857 1 k

int iCyclic = 142857;
double dLookSay = 1.303577;
int *pi = NULL;
double *pd = &dLookSay;
pi = &iCyclic;
*pi = (int) *pd;

1.303577

0 1

1 0 1 0 1

<- same as *piAdams == *piBkn

To Illustrate the Point…

int iLife = 42;

int iJackie = 42;

int *piAdams = &iLife;

int *piBkn = &iJackie;

int **ppiMeta = &piAdams;

printf("%d %d\n",
 piAdams == piBkn,
 *piAdams == *piBkn);

printf(”%d %d %d %d %d\n",
 ppiMeta == &piAdams,
 ppiMeta == &piBkn,
 *ppiMeta == piAdams,
 *ppiMeta == piBkn,
 **ppiMeta == *piBkn);

6

iJackie

piBkn

42

k

k+4

k+8

piAdams

ppiMeta

k+4

k+8

k+16

k+24

iLife 42 k

7

What Points to Whom, Where?

iJackie

piBkn

42

k

k+4

k+8

piAdams

ppiMeta

k+4

k+8

k+16

k+24

iLife 42 k

A: 0 0
B: 0 1
C: 1 0
D: 1 1

piAdams = piBkn;

printf("%d %d\n",
 piAdams == piBkn,
 *piAdams == *piBkn);

k+4

Pointer Declaration Gotcha

Pointer declarations can be written as follows: int* pi;

This is equivalent to: int *pi;

but the former seemingly emphasizes that the type of pi is ("int pointer")

Even though the first syntax may seem more natural, and you are welcome to use it,

it isn’t how the designers of C thought about pointer declarations.

Beware!!!!! This declaration : int* p1, p2;

 really means: int *p1; int p2;

To declare both p1 and p2 as pointers, i.e.: int* p1; int* p2;

in one statement, you must "star" both vars: int *p1, *p2;9

ARRAYS

10

@zburival

https://unsplash.com/@zburival

Refresher: Java Arrays

• Always dynamically allocated

• Even when the values are known at

compile time (e.g., initializer lists)

• Access via a reference variable

public static void arrays() {
int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];
for(int c = 0;
 c < arr2.length; c++)
 arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

11
1 2 3

3length

3 6 9

3length

arr1

arr2

arr3

dynamically allocated

objects

local references

C Arrays

• Can be statically allocated

e.g., as local variables

• Length must be known at compile time

• Can also be dynamically allocated

• We will see this in Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

12

arr1[0]

arr2[0]

1

2

3

3

6

9

arr1[1]

arr1[2]

arr2[1]

arr2[2]

C Arrays

• Can be statically allocated

e.g., as local variables

• Length must be known at compile time

• Can also be dynamically allocated

• We will see this in Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

13

arr1[0]

arr2[0]

1

2

3

3

6

9

arr1[1]

arr1[2]

arr2[1]

arr2[2]

C Arrays

• Can be statically allocated

e.g., as local variables

• Length must be known at compile time

• Can also be dynamically allocated

• We will see this in Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

14

arr1[0]

arr2[0]

1

2

3

3

6

9

arr1[1]

arr1[2]

arr2[1]

arr2[2]

C Arrays

• Can be statically allocated

e.g., as local variables

• Length must be known at compile time

• Can also be dynamically allocated

• We will see this in Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

15

arr1[0]

arr2[0]

1

2

3

3

6

9

arr1[1]

arr1[2]

arr2[1]

arr2[2]

C Arrays

• Can be statically allocated

e.g., as local variables

• Length must be known at compile time

• Can also be dynamically allocated

• We will see this in Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

16

arr1[0]

arr2[0]

1

2

3

3

6

9

arr1[1]

arr1[2]

arr2[1]

arr2[2]

Pointer/Array Interplay

• Array name alone can be

used as a pointer: arr vs. &arr[0]

17

int *arr3 = arr1;
 OR
int *arr3 = &arr1[0];

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

Pointer/Array Interplay

• Array name alone can be

used as a pointer: arr vs. &arr[0]

• Subscript notation can be used

with pointers

18

int *arr3 = arr1;
int i = arr3[1];

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =
 sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)
 arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

Pointer Arithmetic

Array indexing is actually a pointer operation!

 arr[k] is syntactic sugar for *(arr + k)

It follows that pointer addition is on elements, not bytes:

 ptr ± k is implicitly

ptr ± (k * sizeof(*ptr)) bytes

Pointer subtraction also works on elements, not bytes:

(ptr + k) – ptr == k

19

Arrays with Functions

Passing an array to a function

• Arrays “decay” to pointers

(the function parameter gets the

address of the array)

• Array length in signature is ignored

• sizeof “doesn’t work”

Returning an array from a function

• C doesn’t permit functions to have

arrays for return types

• Can return a pointer instead

• Be careful not to return an

address of a local variable

(since it will be deallocated!)

/* equivalent function signatures */
size_t count(int numbers[]);
size_t count(int *numbers);
size_t count(int numbers[5]);
{

 /* always returns 8 */
 return sizeof(numbers);
}

int[] getArr();
int *getArr();

20

STRINGS

21

Dewch ymlaen, Cymru!

Strings and String Literals in C

A string in C is a sequence of contiguous chars

• Terminated with null char ('\0') – not to be confused with the NULL pointer

• Double-quote syntax (e.g., "hello") to represent a string literal

• String literals can be used as special-case initializer lists

• No other language features for handling strings

• Delegate string handling to standard library functions

Examples

• "abcd" is a string literal

• "a" is a string literal

Contrast

• 'a' is a character literal, not a string literal

(really an int, as we've discussed)

22

How many

bytes?

Pointers for making a Lemon Gelatin Dessert

char string[10] = {'H','e','l','l','o','\0'};
(or, equivalently*)

char string[10] = "Hello";

char *pc = string+1;

printf(”Y%sw ", &string[1]);
printf(”J%s!\n", pc);

* Unless you mess up counting. See strings.pdf a few precepts from now.
23

string[0]

string[9]

‘h’

‘e’

‘l’

‘l’

‘o’

’\0’

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
enum { LENGTH = 14 };
int main() {
 char h[] = "Hello, ";
 char w[] = "world!";
 char msg[LENGTH];
 char *found;
 if(sizeof(msg) <= strlen(h) + strlen(w))
 return EXIT_FAILURE;
 strcpy(msg, h);
 strcat(msg, w);
 if(strcmp(msg , "Hello, world!"))
 return EXIT_FAILURE;
 found = strstr(msg, ", ");
 if(found – msg != 5)
 return EXIT_FAILURE;
 return EXIT_SUCCESS;
}

Standard String Library

24

strlen(h) + strlen(w)

strcpy(msg, h);
strcat(msg, w);

strcmp(msg)

strstr(msg, ", ");

25

DIY (x2) – Already Available!

	Slide 1: Pointers, Arrays, and Strings
	Slide 2: POINTERS
	Slide 3: Warm-up: Java references
	Slide 4: Pointers in C
	Slide 5: Straight to the Point
	Slide 6: To Illustrate the Point…
	Slide 7: What Points to Whom, Where?
	Slide 9: Pointer Declaration Gotcha
	Slide 10: ArrayS
	Slide 11: Refresher: Java Arrays
	Slide 12: C Arrays
	Slide 13: C Arrays
	Slide 14: C Arrays
	Slide 15: C Arrays
	Slide 16: C Arrays
	Slide 17: Pointer/Array Interplay
	Slide 18: Pointer/Array Interplay
	Slide 19: Pointer Arithmetic
	Slide 20: Arrays with Functions
	Slide 21: STRINGS
	Slide 22: Strings and String Literals in C
	Slide 23: Pointers for making a Lemon Gelatin Dessert
	Slide 24: Standard String Library
	Slide 25

