COS 217: Introduction to Programr

Numbers (in C and otherwise)

Q: Why do computer programmers confuse Christ

A: Because 25 Dec == 31 O

The Decimal Number System

Name

• From Latin *decem* [\("ten"\)](https://commons.wikimedia.org/wiki/File:Arabic_numerals-en.svg)

Characteristics

- For us, these symbols (Not universal …)
	- **0 1 2 3 4 5 6 7 8 9**

- Positional
	- **2945 ≠ 2495**
	- \cdot 2945 = (2*10³) + (9*10²) + (4*10¹) + (5*10

2 (Most) people use the decimal number system

The Binary Number System

binary

 adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal. From late Latin *binarius* ("consisting of two"), from classical Latin *bis* ("twice")

Characteristics

- Two symbols: **0 1**
- Positional: 1010_B ≠ 1100_B

Most (digital) computers use the binary number system

Terminology

- Bit: a single binary symbol ("binary digit")
- Byte: (typically) 8 bits
- Nibble / Nybble: 4 bits we'll see a more common name for 4 bits soon.

Decimal-Binary Equivalence

Binary to decimal: expand using positional notation

Integer-Binary Conversion

(Decimal) Integer to binary: do the reverse

• Determine largest power of 2 that's ≤ number; write template

 $37 = (?*2⁵) + (?*2⁴) + (?*2³) + (?*2²) + (?*2¹) + (?*2⁰)$

• Fill in template

Integer-Binary Conversion

Integer to binary division method

• Repeatedly divide by 2, consider remainder

$$
\begin{array}{c|cccc}\n37 & / & 2 & = & 18 & R & 1 \\
18 & / & 2 & = & 9 & R & 0 \\
9 & / & 2 & = & 4 & R & 1 \\
4 & / & 2 & = & 2 & R & 0 \\
2 & / & 2 & = & 1 & R & 0 \\
1 & / & 2 & = & 0 & R & 1\n\end{array}
$$

Read from bottom to top: 100101_B

The Hexadecimal Number System

Name

• From ancient Greek *ἕξ* (*hex,* "six") + Latin-derived *decimal*

Characteristics

- Sixteen symbols
	- 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Positional
	- $A13D_H \neq 3DA1_H$

Computer programmers often use hexadecimal ("hex")

Binary-Hexadecimal Conversion

Observation:

• $16^1 = 2^4$, so every 1 hexit corresponds to a nybble (4 bits)

Binary to hexadecimal

1010000100111101_B **A 1 3 DH**

Number of bits in binary number not a multiple of 4? \Rightarrow pad with zeros on left

Hexadecimal to binary

Discard leading zeros from binary number if appropriate

Integer-Hexadecimal Conversion

Hexadecimal to (decimal) integer: expand using positional notation

 $25_H = (2 \times 16^1) + (5 \times 16^0)$ **= 32 + 5 = 37**

Integer to hexadecimal: use the division method

37 / 16 = 2 R 5 2 / 16 = 0 R 2

Read from bottom to top: 25_H

Convert binary 101010 into decimal and hex

- A. 21 decimal, A2 hex
- B. 21 decimal, A8 hex
- C. 18 decimal, 2A hex
- D. 42 decimal, 2A hex

hint: convert to hex first

challenge: once you've locked in and discussed with a neighbor, figure out why this slide's title is what it is.

The Octal Number System

Name

• "octo" (Latin) ⇒ eight

Characteristics

- Eight symbols
	- 0 1 2 3 4 5 6 7
- Positional
	- 17430 \neq 73140

Computer programmers sometimes use octal (so does Mickey!)

Why?

• In C: 0 prefix (01743, etc.)

```
[cmoretti@tars:tmp$ls -l myFile
-rw-r--r-- 1 cmoretti wheel 0 Sep 7 10:58 myFile
[cmoretti@tars:tmp$chmod 755 myFile
[cmoretti@tars:tmp$ls -l myFile
-rwxr-xr-x 1 cmoretti wheel 0 Sep 7 10:58 myFile
```
INTEGERS

Representing Unsigned (Non-Negative) Integers

Mathematics

• Non-negative integers' range is 0 to ∞

Computers

- Range limited by computer's word size
- Word size is n bits \Rightarrow range is 0 to 2ⁿ 1 representing with an n bit binary number
- Exceed range ⇒ overflow

Typical computers today

• n = 32 or 64, so range is 0 to 2^{32} – 1 (~4 billion) or 2^{64} – 1 (huge ... ~1.8e19)

Pretend computer for these slides, hereafter on these slides:

- Assume $n = 4$, so range is 0 to $2^4 1$ (15)
- All points generalize to larger word sizes like 32 and 64

Representing Unsigned Integers

On 4-bit pretend computer

Adding Unsigned Integers

Addition

Start at right column Proceed leftward Carry 1 when necessary

111 0111_B $+ 10 + 1010_B$ **-- ----** 1 0001_B

Beware of overflow

Results are mod 24 $7 + 10 = 17$ 17 mod $16 = 1$

Subtracting Unsigned Integers

Subtraction

Start at right column Proceed leftward Borrow when necessary

Beware of overflow

Results are mod 24 $3 - 10 = -7$ 19

 -7 mod $16 = 9$

Reminder: negative numbers exist

Obsolete Attempt #1: Sign-Magnitude

Definition

 High-order bit indicates sign $0 \Rightarrow$ positive 1 ⇒ negative Remaining bits indicate magnitude $0101_B = 101_B = 5$ $1101_B = -101_B = -5$ Pros and cons

- + easy to understand, easy to negate
- + symmetric
- two representations of zero
- need different algorithms to add signed and unsigned numbers Not used for integers today

Obsolete Attempt #2: Ones' Complement

Definition High-order bit has weight $-(2^{b-1}-1)$ $1010_B = (1*-7)+(0*4)+(1*2)+(0*1)$ $= -5$ $0010_B = (0*-7)+(0*4)+(1*2)+(0*1)$ $= 2$

Computing negative $=$ flipping all bits

Similar pros and cons to sign-magnitude

Two's Complement

Definition High-order bit has weight $-(2^{b-1})$ $1010_B = (1*-8)+(0*4)+(1*2)+(0*1)$ $= -6$ $0010_{\rm B} = (0*-8)+(0*4)+(1*2)+(0*1)$ $= 2$

Two's Complement (cont.)

Computing negative $neg(x) = -x + 1$ $neg(x) = onescopy(x) + 1$ $neg(0101_B) = 1010_B + 1 = 1011_B$ $neg(1011_B) = 0100_B + 1 = 0101_B$

Pros and cons

- not symmetric

("extra" negative number; $-(-8) = -8$)

- + one representation of zero
- + same algorithms add/subtract signed and unsigned integers

Adding Signed Integers

Subtracting Signed Integers

How would you compute $3 - 4$?

Subtracting Signed Integers

11 3 0011_B $4 - 0100_B$ **-- ----** -1 1111_B **3** 0011_B $+ -4 + 1100_B$ **-- ----** -1 1111_B Perform subtraction with borrows Compute two's comp or and add

Negating Signed Ints: Math Question: Why does two's comp arithmetic work? Answer: $[-b]$ mod 2^4 = [twoscomp(b)] mod 2^4 So: $[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4$ **[–b] mod 24** $=$ $[2^4 - b]$ mod 2^4 $= [2⁴ - 1 - b + 1]$ mod $2⁴$ $=$ $[(2^4 - 1 - b) + 1]$ mod 2^4 **= [onescomp(b) + 1] mod 24 = [twoscomp(b)] mod 24 [a – b] mod 24** $= [a + 2⁴ - b] \mod 2⁴$ $=$ [a + 2⁴ – 1 – b + 1] mod 2⁴ $=$ $[a + (2⁴ - 1 - b) + 1]$ mod $2⁴$ **= [a + onescomp(b) + 1] mod 24**

 $=$ [a + twoscomp(b)] mod $2⁴$

(AT LONG°LAST) INTEGERS IN C

Integer Data Types in C

Integer types of various sizes: {signed, unsigned} {char, short, int, long}

- Shortcuts: signed assumed for short/int/long; unsigned means unsigned int
- char is 1 byte
	- Number of bits per byte is unspecified (but in the 21st century, safe to assume it's 8)
	- Signedness is system dependent, so for arithmetic use "signed char" or "unsigned char"
- Sizes of other integer types not fully specified but constrained:
	- int was intended to be "natural word size" of hardware, but isn't always
	- $2 \leq$ sizeof(short) \leq sizeof(int) \leq sizeof(long)

On armlab:

- Natural word size: 8 bytes ("64-bit machine")
- char: 1 byte
- short: 2 bytes
- int: 4 bytes (compatibility with widespread 32-bit code)
- ³¹ long: 8 bytes

Integer Types in Java vs. C

1.Not guaranteed by C, but on **armlab**, **short** = 16 bits, **int** = 32 bits, **long** = 64 bits 2.Not guaranteed by C, but on **armlab**, **char** is unsigned

sizeof Operator

- Applied at compile-time
- Operand can be a data type
- Operand can be an expression, from which the compiler infers a data type

Examples, on armlab using gcc217

- sizeof(int) evaluates to 4
- sizeof(i) evaluates to 4 if i is a variable of type int
- sizeof(1+2) evaluates to 4

Integer Literals in C

- Decimal int: 123
- Prefixes to indicate a different base
	- Octal int: 0173 = 123
	- Hexadecimal int: 0x7B = 123
	- No prefix to indicate binary int literal
- Suffixes to indicate a different type
	- Use "L" suffix to indicate long literal
	- Use "U" suffix to indicate unsigned literal
	- No suffix to indicate char or short literals; instead, cast

OPERATIONS ON NUMBERS

Reading / Writing Numbers

Motivation

- Must convert between external form (sequence of character codes) and internal form
- Could provide getchar(), putshort(), getint(), putfloat(), etc.
- Alternative implemented in C: parameterized functions

scanf() and printf()

- Can read/write any primitive type of data
- First parameter is a format string containing conversion specs: size, base, field width
- Can read/write multiple variables with one call

See King book for details

Operators in C

- Typical arithmetic operators: $+ * / \%$
- Typical relational operators: == $!=$ < <= > >=
	- Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Typical logical operators: ! && ||
	- Each interprets $0 \Rightarrow$ FALSE, non- $0 \Rightarrow$ TRUE
	- Each evaluates to FALSE \Rightarrow 0, TRUE \Rightarrow 1
- Cast operator: (type)
- Bitwise operators: \sim & | ^ >> <<

Other Bitwise Operations on Unsigned Integers

Bitwise NOT $($ ~ in C)

• Flip each bit (don't forget leading 0s!)

Bitwise AND (& in C)

40

• AND (1=True, 0=False) corresponding bits

Useful for "masking" bits to 0 x & 0 is 0, x & 1 is x

Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)

• Logical OR corresponding bits

Useful for "masking" bits to 1 $x \mid 1$ is 1, $x \mid 0$ is x

Bitwise exclusive OR (^ in C)

• Logical exclusive OR corresponding bits

x \land x sets all bits to 0

Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)

• **2 (TRUE) && 1 (TRUE) => 1 (TRUE)**

• **2 (TRUE) & 1 (TRUE) => 0 (FALSE)**

Implication:

- Use logical AND to control flow of logic
- Use bitwise AND only when doing bit-level manipulation
- Same for OR and NOT 42

How do you set bit k (where the least significant bit is bit 0) of unsigned variable u to zero (leaving everything else in u unchanged)?

- A. $u < (0 < k);$
- B. u $| = (1 \le k);$
- C. u $|= -(1 << k);$
- D. u $&=$ \sim (1 << k);
- E. $u = -u^{\wedge} (1 \le k);$

Aside: Using Bitwise Ops for Arithmetic

Can use <<, >>, and & to do some arithmetic efficiently

- $x * 2y == x << y$ • $3*4 = 3*2^2 = 3 < 2 \Rightarrow 12$
- $x / 2^y == x >> y$ • $13/4 = 13/2^2 = 13 >> 2 \Rightarrow 3$
- $x % 2^y == x & (2^y-1)$

44

• $13\%4 = 13\%2^2 = 13\&(2^2-1)$ $= 1383 \Rightarrow 1$

Fast way to multiply by a power of 2

Fast way to divide unsigned by power of 2

Fast way to mod by a power of 2

Many compilers will do these transformations automatically!

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

Results are mod 24

Bitwise right shift: fill on left with ???

Shifting Signed Integers (cont.)

Bitwise *arithmetic* right shift: fill on left with sign bit

Bitwise *logical* right shift: fill on left with zeros

In C, right shift (>>) could be logical (>>> in Java) or arithmetic (>> in Java)

- Not specified by standard (happens to be arithmetic on armlab)
	- Best to avoid shifting signed integers

Other Operations on Signed Ints

Bitwise NOT $($ ~ in C)

• Same as with unsigned ints

Bitwise AND (& in C)

• Same as with unsigned ints

Bitwise OR: (| in C)

• Same as with unsigned ints

Bitwise exclusive OR (^ in C)

• Same as with unsigned ints

Best to avoid using signed ints for bit-twiddling.

Many high-level languages provide an assignment *statement*

C provides an assignment operator

- Performs assignment, and then evaluates to the assigned value
- Allows assignment to appear within larger expressions
- But be careful about precedence! Extra parentheses often needed!

Assignment Operator Examples

Examples

```
i = 0;
    /* Side effect: assign 0 to i.
       Evaluate to 0. */
j = i = 0; /* Assignment op has R to L associativity */
    /* Side effect: assign 0 to i.
       Evaluate to 0.
       Side effect: assign 0 to j.
       Evaluate to 0. */
while ((i = getchar()) != EOF) …
    /* Read a character or EOF value.
       Side effect: assign that value to i.
       Evaluate to that value.
       Compare that value to EOF. 
       Evaluate to 0 (FALSE) or 1 (TRUE). */
```


Special-Purpose Assignment in C

Motivation

- The construct $a = b + c$ is flexible
- The construct $d = d + e$ is somewhat common
- The construct $d = d + 1$ is very common

Assignment in C

- Introduce $+=$ operator to do things like d $+=$ e
- Extend to $-$ = \star = $/$ = \sim = $\&$ = $|$ = \sim = \lt = \gt > =
- All evaluate to whatever was assigned
- Pre-increment and pre-decrement: ++d ––d
- Post-increment and post-decrement (evaluate to *old* value): d++ d––

Confusion Plusplus

Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

51 E. 7, 13

Incremental Iffiness

Q: What does the following code print?

```
int i = 1;
switch (i++) {
    case 1: printf("%d", ++i);
    case 2: printf("%d", i++);
}
```


Sample Exam Question (Spring 2017, Exam 1)

1(b) (12 points/100) Suppose we have a 7-bit computer. Answer the following questions.

- (i) (4 points) What is the largest unsigned number that can be represented in 7 bits? In binary: In decimal:
- (ii) (4 points) What is the smallest (i.e., most negative) signed number represented in 2's complement in 7 bits?
	- In binary: In decimal:

- (iii) (2 points) Is there a number n, other than O , for which n is equal to $-n$, when represented in 2's complement in 7 bits? If yes, show the number (in decimal). If no, briefly explain why not.
- (iv) (2 points) When doing arithmetic addition using 2's complement representation in 7 bits, is it possible to have an overflow when the first number is positive and the second is negative? (Yes/No answer is sufficient, no need to explain.)

(Hard!) Sample Exam Question (Fall 2020, Exam 1)

-
- a. In the two ranges below, replace the "____" with the inclusive upper and lower bounds of decimal numbers that do not change value when moving from i-bit two's complement to (i+1)-bit two's complement (for example, when moving from four bits to represent integers to using five bits to do so). The two ranges consider two different possibilities for changing an i-bit value into an (i+1)-bit value:

If we make the change by prepending a 0 onto the front of the i-bit representation (e.g., 1001 -> 01001):

 $\lt = \times \lt =$ If we make the change by prepending a 1 onto the front of the i-bit representation (e.g., 1001 -> 11001):

 $\lt = \times \lt =$

b. In the range below, replace the "____" with the inclusive upper and lower bounds of armlab C int literals for which the expression still compiles and does not change value when adding a 0 before the first character of the literal (for example, 217 -> 0217):

 $\lt = \times \lt =$

54

Hint 1: does a literal 09 compile? Hint 2: the word "expression" is intentional; note that the first character of a signed int is not necessarily a digit.

APPENDIX: FLOATING POINT

Rational Numbers

Mathematics

- A rational number is one that can be expressed as the ratio of two integers
- Unbounded range and precision

Computer science

- Finite range and precision
- Approximate using floating point number

Floating Point Numbers

Like scientific notation: e.g., c is 2.99792458×10^8 m/s

This has the form

 $(multiplier) \times (base)^{(power)}$

In the computer,

- Multiplier is called mantissa
- Base is almost always 2
- Power is called exponent

Floating-Point Data Types

C specifies:

- Three floating-point data types: float, double, and long double
- Sizes unspecified, but constrained:
- sizeof(float) \leq sizeof(double) \leq sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)

- float: 4 bytes
- double: 8 bytes

On ArmLab (but varying across architectures)

• long double: 16 bytes

Floating-Point Literals

How to write a floating-point number?

- Either fixed-point or "scientific" notation
- Any literal that contains decimal point or "E" is floating-point
- The default floating-point type is double
- Append "F" to indicate float
- Append "L" to indicate long double

Examples

- double: 123.456, 1E-2, -1.23456E4
- float: 123.456F, 1E-2F, -1.23456E4F
- long double: 123.456L, 1E-2L, -1.23456E4L

IEEE Floating Point Representation

Common finite representation: IEEE floating point

• More precisely: ISO/IEEE 754 standard

Using 32 bits (type **float** in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 8 bits: exponent + 127
- 23 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbbbb

Using 64 bits (type **double** in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023
- 52 bits: binary fraction of the form 1.bb

When was floating-point invented?

mantissa (noun): decimal part of a logarithm, 1865, Answer: long before computers! from Latin mantisa "a worthless addition, makeweight"

Floating Point Example

Sign (1 bit) :

• 1 \Rightarrow negative

Exponent (8 bits):

- $10000011_B = 131$
- \cdot 131 127 = 4

Mantissa (23 bits):

- 1.101101100000000000000000 $_{\rm B}$
- 1 + $(1*2^{-1})$ + $(0*2^{-2})$ + $(1*2^{-3})$ + $(1*2^{-4})$ + $(0*2^{-5})$ + $(1*2⁻⁶)+(1*2⁻⁷)+(0*2⁻¹)= 1.7109375$

Number:

 \cdot -1.7109375 \times 2⁴ = -27.375

11000001110110110000000000000000

32-bit representation

Floating Point Consequences

"Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\epsilon \approx 10^{-7}$

- No such number as 1.000000001
- Rule of thumb: "almost 7 digits of precision"

For double: $\epsilon \approx 2 \times 10^{-16}$

• Rule of thumb: "not quite 16 digits of precision"

These are all relative numbers

Floating Point Consequences, cont

- Just as decimal number system can represent only some rational numbers with finite digit count…
	- Example: 1/3 cannot be represented

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5 cannot be represented

Beware of round-off error

- Error resulting from inexact representation
- Can accumulate
- Be careful when comparing two floating-point numbers for equality Be careful when comparing two floating-point numbers for equality

What does the following code print?

```
double sum = 0.0;
double i;
for (i = 0.0; i != 10.0; i++)
    sum += 0.1;
if (sum == 1.0)
    printf("All good!\n");
else
    printf("Yikes!\n");
```
- A. All good!
- B. Yikes!
- C. (Infinite loop)
- D. (Compilation error)

B: Yikes!

… loop terminates, because we can represent 10.0 exactly by adding 1.0 at a time.

… but sum isn't 1.0 because we can't represent 1.0 exactly by adding 0.1 at a time.