
Create Rubric
55 points

 Create your rubric now or come back to it later. You can also make edits to your rubric while grading.

Q1 Q1: You Belong with Me
6 points

Q1.1 a: max declaration

1 point  Rubric Settings

Q1.2 b: max definition header

1 point  Rubric Settings

1 +1.0

Correct: the function declaration appears in the interface
file.

The preprocessor handles #include statements that
result in the interface's declarations being injected into
the top of both the client and the implementation.

2 +0.0

The function declaration appears in the interface file.

The preprocessor handles #include statements that
result in the interface's declarations being injected into
the top of both the client and the implementation.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Q1.3 c: main definition header

1 point  Rubric Settings

Q1.4 d: multiple inclusion guard

1 point  Rubric Settings

1 +1.0

Correct: the definition for the function declared in the
interface appears in the implementation file.

2 +0.0

The definition for the function declared in the interface
appears in the implementation file.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: the client file is the one with the main function
for the program.

2 +0.0

The client file is the one with the main function for the
program.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: this is the second part of the
 #ifndef / #define / #endif pattern that appears in
interface files to guard against multiple inclusion.

Q1.5 e: max conditional

1 point  Rubric Settings

Q1.6 f: max return value check

1 point  Rubric Settings

2 +0.0

This is the second part of the
 #ifndef / #define / #endif pattern that appears in
interface files to guard against multiple inclusion.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: this is the logic in the body of the IntMath_max
function, which appears in the implementation file.

2 +0.0

This is the logic in the body of the IntMath_max function,
which appears in the implementation file.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: this checks the return value from a call to the
 IntMath_max function, which is most likely to happen
from the client program.

2 +0.0

Q2 Q2: Anti-Hero
5 points

Q2.1 a: ~(0xF << 2)

1 point  Rubric Settings

This checks the return value from a call to the
 IntMath_max function, which is most likely to happen
from the client program.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: the answer is -61.

0xF is 32 bits long, with the value 0...0001111.

left-shifting by two bits yields the value 0...0111100.

bitwise negating yields the value 1...1000011

this is a negative number, because the leftmost bit is 1.

we do the two's complement algorithm to find the
magnitude of the negative number: 0...0111101 , which is
1+4+8+16+32 = 61.

2 +0.0

The answer is -61.

0xF is 32 bits long, with the value 0...0001111.

left-shifting by two bits yields the value 0...0111100.

bitwise negating yields the value 1...1000011

this is a negative number, because the leftmost bit is 1.

Q2.2 b: (-~0xF) >> 3

1 point  Rubric Settings

we do the two's complement algorithm to find the
magnitude of the negative number: 0...0111101 , which is
1+4+8+16+32 = 61.

(3 was the most common incorrect answer, which results
from doing the same process above but without
acknowledging all the leading 0s initially: 1111 -> 111100
-> 000011 = 3.)

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: the answer is 2.

0xF is 32 bits long, with the value 0...0001111.

Bitwise negating yields 1...1110000.

Arithmetic negating requires doing the two's
complement algorithm: 0...0010000.

This is a non-negative (because the leftmost bit is 0)
signed integer, so right-shift is well-defined to replace
from the left with 0s.

Thus, right-shifting by 3 bits yields: 0...0000010 = 2.

2 +0.0

The correct answer is 2.

0xF is 32 bits long, with the value 0...0001111.

Bitwise negating yields 1...1110000.

Arithmetic negating requires doing the two's
complement algorithm: 0...0010000.

Q2.3 c: -(0xF + !~0xF)

1 point  Rubric Settings

This is a non-negative (because the leftmost bit is 0)
signed integer, so right-shift is well-defined to replace
from the left with 0s.

Thus, right-shifting by 3 bits yields: 0...0000010 = 2.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: the answer is 1.

0xF is 32 bits long, with the value 0...0001111.

Bitwise negating yields 1...1110000.

Adding the original 0...0001111 with the bitwise negated
1...1110000 yields 1...1111111

Arithmetic negating requires doing the two's
complement algorithm: 0...0000001 = 1.

2 +0.0

The correct answer is 1.

0xF is 32 bits long, with the value 0...0001111.

Bitwise negating yields 1...1110000.

Adding the original 0...0001111 with the bitwise negated
1...1110000 yields 1...1111111

Arithmetic negating requires doing the two's
complement algorithm: 0...0000001 = 1.

3 +1.0

Q2.4 d: 0xF & ~(1 << 3)

1 point  Rubric Settings

3 +1.0

The correct answer is 1.

0xF is 32 bits long, with the value 0...0001111.

Bitwise negating yields 1...1110000.

Adding the original 0...0001111 with the bitwise negated
1...1110000 yields 1...1111111

Arithmetic negating requires doing the two's
complement algorithm: 0...0000001 = 1.

You were asked to give the answer in base 10. This
answer is in binary, and has an insufficient number of
bits, but full credit for the correct value.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: the answer is 7.

0xF is 32 bits long, with the value 0...0001111.

1 is also 32 bits long, with the value 0...0000001.

Left-shifting 1 by 3 bits yields 0...0001000.

Bitwise negating the result of the shift yields 1...1110111.

Bitwise ANDing 0...0001111 with 1...1110111 yields
0...0000111 = 7.

2 +0.0

The correct answer is 7

0xF is 32 bits long, with the value 0...0001111.

Q2.5 e: ~(0xF >> !0xF)

1 point  Rubric Settings

0xF is 32 bits long, with the value 0...0001111.

1 is also 32 bits long, with the value 0...0000001.

Left-shifting 1 by 3 bits yields 0...0001000.

Bitwise negating the result of the shift yields 1...1110111.

Bitwise ANDing 0...0001111 with 1...1110111 yields
0...0000111 = 7.

3 +1.0

The correct answer is 7

0xF is 32 bits long, with the value 0...0001111.

1 is also 32 bits long, with the value 0...0000001.

Left-shifting 1 by 3 bits yields 0...0001000.

Bitwise negating the result of the shift yields 1...1110111.

Bitwise ANDing 0...0001111 with 1...1110111 yields
0...0000111 = 7.

You were asked to give the answer in base 10. This
answer is in binary, and has an insufficient number of
bits, but full credit for the correct value.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: the answer is -16.

0xF is 32 bits long, with the value 0...0001111.

This is a non-zero value, so as a logical value it is

Q3 Q3: I Know Places | Bigger than the Whole Sky
12 points

Q3.1 (1-4) Section

This is a non-zero value, so as a logical value it is
interpreted as "true". Thus, logical negation will produce
"false", which yields the value 0.

Right-shifting by 0 bits does not make any change, so the
expression in the parentheses (still) evaluates to 0xF.

Bitwise negating 0xF yields 1...1110000.

The leftmost bit of this number is a 1, so this is a
negative number.

To find the magnitude of this negative number, complete
the 2's complement algorithm: 0...0010000 = 16.

2 +0.0

The correct answer is -16

0xF is 32 bits long, with the value 0...0001111.

This is a non-zero value, so as a logical value it is
interpreted as "true". Thus, logical negation will produce
"false", which yields the value 0.

Right-shifting by 0 bits does not make any change, so the
expression in the parentheses is still 0xF.

Bitwise negating 0xF yields 1...1110000.

The leftmost bit of this number is a 1, so this is a
negative number.

To find the magnitude of this negative number, complete
the 2's complement algorithm: 0...0010000 = 16.

+ Add Rubric Item  Create Group  Import...

4 points  Rubric Settings

Q3.2 (1) Number of Bytes

1 point  Rubric Settings

1 +1.0

ai , ui , aiDigits , and pui are all parameters or local
variables of a function, and go in the Stack section in the
activation record (aka stackframe) for a function call of
that function.

2 +2.0

ai , ui , aiDigits , and pui are all parameters or local
variables of a function, and go in the Stack section in the
activation record (aka stackframe) for a function call of
that function.

3 +3.0

ai , ui , aiDigits , and pui are all parameters or local
variables of a function, and go in the Stack section in the
activation record (aka stackframe) for a function call of
that function.

4 +4.0

Correct: ai , ui , aiDigits , and pui are all parameters
or local variables of a function, and go in the Stack
section in the activation record (aka stackframe) for a
function call of that function.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: arrays are passed into functions as pointers to
the 0th element of the array, so the function's parameter

Q3.3 (2) Number of Bytes

1 point  Rubric Settings

Q3.4 (3) Number of Bytes

1 point  Rubric Settings

the 0th element of the array, so the function's parameter
is a pointer type. Pointers on armlab are 8 bytes.

2 +0.0

Arrays are passed into functions as pointers to the 0th
element of the array, so the function's parameter is a
pointer type. Pointers on armlab are 8 bytes.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: on armlab, int s (of any signedness) are 4 bytes.

2 +0.0

On armlab, int s (of any signedness) are 4 bytes.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: aiDigits is an array of 4 int s, each of which is
allocated 4 bytes on armlab. There is no array overhead,
so the total memory allocated for aiDigits is:
4 ∗ 4 = 16

2 +0.0

Q3.5 (4) Number of Bytes

1 point  Rubric Settings

Q3.6 (5) Section

1 point  Rubric Settings

2 +0.0

aiDigits is an array of 4 int s (and only 4 -- unlike with
 char arrays representing strings, there is no trailing
sentinel value in arbitrary arrays) each of which is
allocated 4 bytes on armlab. There is no array overhead,
so the total memory allocated for aiDigits is:
4 ∗ 4 = 16

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: on armlab, all pointer types are 8 bytes.

2 +0.0

On armlab, all pointer types are 8 bytes.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: malloc allocates space from the heap and
returns a pointer to that space.

2 +0.0

malloc allocates space from the heap and returns a
pointer to that space.

Q3.7 (5) Number of Bytes

1 point  Rubric Settings

Q3.8 (6) Section

1 point  Rubric Settings

pointer to that space.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: pui is an unsigned int * , thus *pui (i.e., the
thing that pui points to) is an unsigned int . On armlab,
int s (of any signedness) are 4 bytes.

2 +0.0

pui is an unsigned int * , thus *pui (i.e., the thing that
 pui points to) is an unsigned int . On armlab, int s (of
any signedness) are 4 bytes.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: string literals are allocated as arrays of
characters in the RODATA section.

2 +0.0

String literals are allocated as arrays of characters in the
RODATA section.

+ Add Rubric Item  Create Group  Import...

Q3.9 (6) Number of Bytes

1 point  Rubric Settings

Q4 Q4: Forever & Always
12 points

Q4.1 a: a0++

1 point  Rubric Settings

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: the contents of the RODATA array of characters
are: {'%', 'u', '\n', '\0'} : a total of 4 bytes.

2 +0.0

The contents of the RODATA array of characters are:
 {'%', 'u', '\n', '\0'} : a total of 4 bytes.

Common close-but-incorrect answers included 3 bytes
(likely due to forgetting the '\0') and 5 bytes (likely due
to interpreting '\n' as two separate characters rather
than the C character constant name for the newline
character)

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct: it is not legal to increment an array name.

2 +0.0

It is not legal to increment an array name.

Q4.2 b: (*a0)++

1 point  Rubric Settings

Q4.3 c: p1++

1 point  Rubric Settings

It is not legal to increment an array name.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

Dereferencing a0 yields the character '2'
Incrementing that result will place '3' in a0[0]

2 +0.0

Dereferencing a0 yields the character '2'
Incrementing that result will place '3' in a0[0]

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

The pointer p1 points to a0[0] .
Incrementing p1 updates the pointer to point to a0[1] .

2 +0.0

The pointer p1 points to a0[0] .
Incrementing p1 updates the pointer to point to a0[1] .

Q4.4 d: (*p1)++

1 point  Rubric Settings

Q4.5 e: (&p1)++

1 point  Rubric Settings

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

Dereferencing p1 yields the character '2' .
Incrementing that causes the character '3' to be placed
in a0[0]

2 +0.0

Dereferencing p1 yields the character '2' .
Incrementing that causes the character '3' to be placed
in a0[0]

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

The address of p1 is an address to the memory location
on the stack where p1 is. The address does not exist as a
variable that we can increment.

2 +0.0

The address of p1 is an address to the memory location

Q4.6 f: (*(&p1))++

1 point  Rubric Settings

Q4.7 p2++

1 point  Rubric Settings

The address of p1 is an address to the memory location
on the stack where p1 is. The address does not exist as a
variable that we can increment.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

The & and * operators are inverses of each other. If we
take the address of p1 and then dereference that
address, we are back at the original pointer, p1 . So this
statement is the same as 4.c.

2 +0.0

The & and * operators are inverses of each other. If we
take the address of p1 and then dereference that
address, we are back at the original pointer, p1 . So this
statement is the same as 4.c.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

The pointer p2 points to a0[0] .
Incrementing p2 updates the pointer to point to a0[1] .
It is the char that is const , not the pointer, so it is fine to

Q4.8 (*p2)++

1 point  Rubric Settings

Q4.9 *(p3++)

1 point  Rubric Settings

It is the char that is const , not the pointer, so it is fine to
increment the pointer.

2 +0.0

The pointer p2 points to a0[0] .
Incrementing p2 updates the pointer to point to a0[1] .
It is the char that is const , not the pointer, so it is fine to
increment the pointer.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

Dereferencing p2 gives us a const char . We cannot
increment a const char .

2 +0.0

Dereferencing p2 gives us a const char . We cannot
increment a const char .

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

Q4.10 (*p3)++

1 point  Rubric Settings

Q4.11 p4++

1 point  Rubric Settings

p3 is a const pointer. We cannot increment a const
pointer.

2 +0.0

p3 is a const pointer. We cannot increment a const
pointer.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

Dereferencing p3 yields the character '2'.
Incrementing that causes the character '3' to be placed in
a0[0] .
It is the pointer that is const . It is OK to increment the
 char .

2 +0.0

Dereferencing p3 yields the character '2'.
Incrementing that causes the character '3' to be placed in
a0[0] .
It is the pointer that is const . It is OK to increment the
 char .

+ Add Rubric Item  Create Group  Import...

Q4.12 (*p4)++

1 point  Rubric Settings

Q5 Q5: I Did Something Bad
12 points

Q5.1 a

2 points  Rubric Settings

1 +1.0

Correct:

p4 is a const pointer. We cannot increment it.

2 +0.0

p4 is a const pointer. We cannot increment it.

+ Add Rubric Item  Create Group  Import...

1 +1.0

Correct:

Dereferencing p4 gives us a const char . We cannot
increment a const char .

2 +0.0

Dereferencing p4 gives us a const char . We cannot
increment a const char .

+ Add Rubric Item  Create Group  Import...

2 points  Rubric Settings

1 +2.0

Correct

The array ai was not allocated using malloc() ,
 calloc() or realloc() and thus it is incorrect to use it
as an argument in a call to free() .

2 +1.0

The correct answer is D.
free(ai) tries to free memory that was not allocated
with malloc() , calloc() or realloc() . It does not try to
access it by dereferencing.

3 +0.0

The correct answer is D.
The array ai was not allocated using malloc() ,
 calloc() or realloc() and thus it is incorrect to use it
as an argument in a call to free() .

4 +1.0

The correct answer is D.
free(ai) tries to free memory that was not allocated
with malloc() , calloc() or realloc() . But there are no
double frees in this code snippet.

5 +1.0

The correct answer is D.
free(ai) tries to free memory that was not allocated
with malloc() , calloc() or realloc() . But there are no
memory leaks in this code snippet.

+ Add Rubric Item  Create Group  Import...

Q5.2 b

2 points  Rubric Settings

Q5.3 c

2 points  Rubric Settings

1 +2.0

Correct

When we execute pi1 = ai; we lose the pointer that pi1
used to hold for the memory allocated in the Heap, thus
creating a memory leak.

2 +0.0

The correct answer is C.
When we execute pi1 = ai; we lose the pointer that pi1
used to hold for the memory allocated in the Heap, thus
creating a memory leak.

3 +1.0

The correct answer is C.
When we execute pi1 = ai; we lose the pointer that pi1
used to hold for the memory allocated in the Heap, thus
creating a memory leak. But we are not accessing
unallocated memory.

4 +0.0

The correct answer is C.
It cannot be both C and None.

+ Add Rubric Item  Create Group  Import...

1 +2.0

Q5.4 d

2 points  Rubric Settings

Correct

2 +0.0

The correct answer is None.

The space allocated in the first malloc is freed by the
first free . Then p1 is set to be an alias to p2 , and is
used in the second free to free the space allocated by
the second malloc .

+ Add Rubric Item  Create Group  Import...

1 +2.0

Correct

pi2 = pi1; creates a memory leak.
free(pi2); frees the memory pointed to by both pi1
and pi2 , so *pi1 accesses freed memory.

2 +0.0

The correct answer is to choose both B and C.
pi2 = pi1; creates a memory leak.
free(pi2); frees the memory pointed to by both pi1
and pi2 , so *pi1 accesses freed memory.

3 +1.0

The correct answer is to choose both B and C.
pi2 = pi1; creates a memory leak.
free(pi2); frees the memory pointed to by both pi1
and pi2 , so *pi1 accesses freed memory.

4 +1.0

Q5.5 e

2 points  Rubric Settings

Q5.6 f
 Rubric Settings

4 +1.0

The correct answer is to choose both B and C.
pi2 = pi1; creates a memory leak.
free(pi2); frees the memory pointed to by both pi1
and pi2 , so *pi1 accesses freed memory.
But there is no accessing of unallocated memory.

+ Add Rubric Item  Create Group  Import...

1 +2.0

Correct.

The correct answer is A.
We allocated room for 3 int for pi2 . That means we did
not allocate memory for a fourth array cell, pi2[3] .

2 +0.0

The correct answer is A.
We allocated room for 3 int for pi2 . That means we did
not allocate memory for a fourth array cell, pi2[3] .

3 +1.0

The correct answer is A.
We allocated room for 3 int for pi2 . That means we did
not allocate memory for a fourth array cell, pi2[3] .
There is no memory leak.

+ Add Rubric Item  Create Group  Import...

2 points  Rubric Settings

1 +2.0

Correct

When we assign pi2 = pi1; after freeing pi1, and then
assign *pi2 = ai[2]; we are creating a memory leak
(the area p_reviously allocated to pi2) and accessing
freed memory. Then, when we free(pi2); (which now
points to the original pi1 memory area) we have a
double free.

2 +0.0

The correct answer is to choose B, C and E.
When we assign pi2 = pi1; after freeing pi1, and then
assign *pi2 = ai[2]; we are creating a memory leak
(the area p_reviously allocated to pi2) and accessing
freed memory. Then, when we free(pi2); (which now
points to the original pi1 memory area) we have a
double free.

3 +1.0

The correct answer is to choose B, C and E.
When we assign pi2 = pi1; after freeing pi1, and then
assign *pi2 = ai[2]; we are creating a memory leak
(the area p_reviously allocated to pi2) and accessing
freed memory. Then, when we free(pi2); (which now
points to the original pi1 memory area) we have a
double free.

4 +1.0

The correct answer is to choose B, C and E.
When we assign pi2 = pi1; after freeing pi1, and then
assign *pi2 = ai[2]; we are creating a memory leak
(the area p_reviously allocated to pi2) and accessing
freed memory. Then, when we free(pi2); (which now
points to the original pi1 memory area) we have a
double free.

There is no unallocated memory being accessed.

Q6 Glitch
8 points

Q6.1 Bugs

8 points  Rubric Settings

5 +1.0

The correct answer is to choose B, C and E.
When we assign pi2 = pi1; after freeing pi1, and then
assign *pi2 = ai[2]; we are creating a memory leak
(the area p_reviously allocated to pi2) and accessing
freed memory. Then, when we free(pi2); (which now
points to the original pi1 memory area) we have a
double free.

There is no unallocated memory being freed.

+ Add Rubric Item  Create Group  Import...

1 +0.0

The three bugs were:

Line 6: sizeof(pcSrc) calculates the number of bytes of
the pointer, which will not vary based on the string's
length. The argument to malloc should have been
 Str_getLength(pcSrc) (or strlen). It would be fine to
allocate 1 more byte than that for the '\0' , which fits
our general pattern, however it is not necessary in this
case since the extra byte will never be filled by the loop
on lines 12-13.

Line 16: this compares the addresses of these two
pointer variables, not their values (i.e., where they point).
The correct loop sustaining condition should be
 (pcSrc >= pcSrcStart) .

Line 18: this attempts to free memory at an address
that was not returned by malloc , because we have

that was not returned by malloc , because we have
advanced pcTemp to the end of the string. Thus, we
should use the variable meant to keep the place of the
beginning of the string instead: free(pcTempStart); .

2 +8.0

Correct line numbers and corrections for both bugs.

3 +4.0

Correct bug #1 and correction.

4 +3.0

Correct bug #1. 2/3 partial credit for correction.

5 +2.0

Correct bug #1. 1/3 partial credit for correction.

6 +1.0

Correct bug #1. Incorrect correction.

7 +4.0

Correct bug #2 and correction.

8 +3.0

Correct bug #2. 2/3 partial credit for correction.

9 +2.0

Correct bug #2. 1/3 partial credit for correction.

0 +1.0

Correct bug #2. Incorrect correction.

+0.0

Incorrect or Blank line number and correction for other
bug.

+0.0

Incorrect or Blank line numbers and corrections for both
bugs.

+ Add Rubric Item  Create Group  Import...

