
Q1 Instructions and Pledge
2 Points

This exam consists of five multi-part questions (plus the pledge), and you have 60 minutes

— budget your time wisely.

This is a partially "open-book" exam, with these allowances:

you may refer to the course's textbooks and the course materials found on or linked

directly from the course's website.

you may refer to your own notes and assignment solutions.

you may use blank paper as scratch space, but you must enter your answer in the

online system in order to receive credit.

In contrast to the allowances above, this exam has these restrictions:

You may not access other information on the Internet.

You may not compile or run any code on armlab or any other machine.

You are not allowed to communicate with any other person, whether inside or outside

the class. You may not send the exam problems to anyone, nor receive them from

anyone, nor communicate any information about the problems or their topics. Because

students may be taking the exam late, this applies from when you take the exam until

the sample solution has been published.

The only form of allowable help from any person is that if you have technical issues or

need to ask a clarifying question about the wording of some problem, you may post a

private message on Ed for the course staff to answer at their discretion.

This examination is administered under the Princeton University Honor Code, and by

signing the pledge below you promise that you have adhered to the instructions above.

Please type out the Honor Code pledge exactly as follows, including this exact spelling
and punctuation:

I pledge my honor that I have not violated the Honor Code during this examination.

I pledge my honor that I have not
violated the Honor Code during this
examination.

Now type your name as a signature confirming that you have adhered to the Honor
Code:

Christopher Moretti
Exam statistics:
Mean: 36.7/55
Median: 38/55
StdDev: 6.1/55�

Christopher Moretti
90th %ile: 44/55
75th %ile: 41/55
60th %ile: 38.5/55
40th %ile: 36.6/55
25th %ile: 32/55
10th %ile: 28.3/55�

Q2 Teeny-tiny Computer
10 Points

Suppose we have a 6-bit computer. Answer the following questions.

Q2.1
2 Points

What is the largest unsigned number that can be represented in 6 bits?

In Binary:

111111

EXPLANATION

Unsigned integers are interpreted as just the value in binary, so the largest value

possible is the value with all 1 bits. This is the decimal value 63 -- recall that the value

of a bitstring of 1 bits is .

In Hexadecimal:

3F

EXPLANATION

 Each hexit is four bits, so the rightmost four bits, 1111 are the hexit F and the two

remaining bits 11 are equivalent to the four bits 0011 , and thus are the hexit 3 .

Q2.2
2 Points

What is the smallest (i.e., most negative) signed number represented in 2’s complement

in 6 bits?

k 2 −k 1

In Binary:

100000

EXPLANATION

Signed integers in 2's complement start at -1 (all 1 bits) and continue until the leftmost

bit is 1 and all others are 0.

In Decimal:

-32

EXPLANATION

To compute the decimal value, we note that the leftmost bit is a 1, so it is a negative

number, and then compute the value by the two's complement algorithm: flip all the

bits to the left of the rightmost 1 (or flip all the bits and add one). In this case, we get

back the same number, 100000 , which is 32.

Q2.3
6 Points

When doing signed arithmetic using 2’s complement representation in 6 bits, consider

the following three operations, where the first number is -12 and the second number is

some positive number.

For each operation, indicate (Yes/No) whether it is possible for the result to overflow?

If an overflow is possible, provide an example that shows the second number in decimal
(you don’t need to show the result).

If an overflow is not possible, say “None” (no explanation is needed).

�. Addition

Example of second number:

Yesý

Noź

None

EXPLANATION

Signed overflow with addition happens when you add a positive and a positive and

get a negative or add a negative and a negative and get a positive. When operands

have opposite signs, their sum will never overflow.

�. Subtraction

EXPLANATION

Signed overflow with subtraction happens when you subtract a negative from a

positive and get a negative or subtract a positive from a negative and get a positive.

Example of second number:

21-31, inclusive

EXPLANATION

 is the most negative number that can be represented, so would

overflow for .

�. Multiplication

Example of second number:

3-31, inclusive

EXPLANATION

 is the most negative number that can be represented, so would

overflow for .

Yesź

Noý

−32 −12 − x

x > 20

Yesź

Noý

−32 −12 × x

x > 2

Q3 Any Portability in a Storm
10 Points

Each subquestion should be considered in the context of appearing in main after the

following definitions:

struct S {
 char c;
 int i;
};

int iPlusOne(struct S s) {
 s.i++;
 return s.i;
}

int main(void) {
 char c;
 int i, j;
 unsigned int k;
 long l;
 struct S s = {'a', 2};

Q3.1
1 Point

This set of subquestions considers the following code:

 i = iPlusOne(s) + iPlusOne(s);

Executing on armlab , what is the value of the int i after its assignment?

6

EXPLANATION

struct parameters are passed by value, so the function iPlusOne gets its own copy

of s , and the increment doesn't change the value of the s declared in main . Thus,

the first call returns 3, as does the second, so their sum is 6.

Q3.2
1 Point

Is this resulting value of i portable (i.e., would it be the same on any system running

C90)?

EXPLANATION

C90 specifies that struct s are passed by value, and there is no risk of the value 6

overflowing an int , which must be at least as large as a char , and thus must be able

to store integer values up to at least 127.

Q3.3
1 Point

Is the size of i portable (i.e., would it be the same on any system running C90)?

EXPLANATION

The size of an int is system dependent. See the relevant handout from precept 4.

Q3.4
1 Point

Is the size of s portable (i.e., would it be the same on any system running C90)?

yesź

noý

yesý

noź

yesý

noź

https://www.cs.princeton.edu/courses/archive/spr22/cos217/precepts/04fund_multifile/datatypes.pdf

EXPLANATION

The size of a struct is at least as large as the sum of the sizes of its fields, but its

exact size depends on padding. Padding within a struct is system dependent based

on architectural alignment preferences implemented by the compiler.

Q3.5
1 Point

This set of subquestions considers the following code:

 c = '\0';
 c--;
 j = c;

Executing on armlab , what is the value of the int j after its assignment?

255

EXPLANATION

char s are 1 byte. On armlab , a char is equivalent to an unsigned char . Thus,

when we subtract 1 from '\0' , which is ASCII value 0 , we get 255 .

Q3.6
1 Point

Is this value of j portable to any system with character encodings using ASCII?

EXPLANATION

Whether char is equivalent to signed char or unsigned char is system

dependent. If char were signed char , the resulting value would be -1 .

yesý

noź

Q3.7
1 Point

Is the size of the char c portable (i.e., would it be the same on any system running C90)?

EXPLANATION

 The size of char is defined by the C standard to be 1 byte.

Q3.8
1 Point

This set of subquestions considers the following code:

 k = 0U;
 l = 1L;
 if(k = l-1)
 k++;
 else
 k--;
 ++k;

Executing on armlab , what is the value of the unsigned int k after this snippet?

0

EXPLANATION

l-1 yields 0L .

Inside the conditional, k gets assigned the value 0U , which is automatically type-

converted from 0L .

This assigned value is emitted to evaluate the conditional and is considered as

"false".

So the k-- in the alternative is executed, resulting in decrementing k to yield the

largest unsigned int value ().

Unconditionally re-incrementing k overflows to yield 0U again. We accepted either

0 or 0U .

yesź

noý

2 −32 1

Q3.9
1 Point

Is this resulting value of k portable (i.e., would it be the same on any system running

C90)?

EXPLANATION

1L-1 is always 0L

0U-1 always results in the largest possible unsigned int ; and the largest possible

unsigned int plus 1 is always 0U .

Thus, we do always get 0U , and our computation is portable -- perhaps surprising,

since the value of the largest possible unsigned int itself is not the same on

every system, as it depends on the size of an unsigned int .

Q3.10
1 Point

Is the size of the long l portable (i.e., would it be the same on any system running C90)?

EXPLANATION

The size of a long is system dependent, with the only requirement that

 sizeof(long) >= sizeof(int) . See the relevant handout from precept 4.

Q4 Places with Character (or not!)
20 Points

Consider the following C program, where some lines (21-24) are commented out initially.

Assume that all calls to malloc succeed (and you don't need to check this).

01 #include <stdio.h>
02 #include <stdlib.h>

yesź

noý

yesý

noź

https://www.cs.princeton.edu/courses/archive/spr22/cos217/precepts/04fund_multifile/datatypes.pdf

03 #include <string.h>

04 int main(void) {
05 enum {ARRAY_LENGTH = 11};
06 int k = ARRAY_LENGTH / 2;
07 char place1[ARRAY_LENGTH] =
08 {'P', 'r', 'i', 'n', 'c', 'e', 't', 'o', 'n', '\0'};
09 char *place2 = "Kingston";
10 const char *place3 = "Queenston";
11 char *pp, *pq;

12 pp = (char *) malloc((ARRAY_LENGTH + 1) * sizeof(char));
13 strcpy(pp, place1);
14 pq = (char *) malloc((ARRAY_LENGTH + 1) * sizeof(char));
15 strcpy(pq, place3);
16 pp = pq;

17 if (place1[k] == pp[k])
18 printf("I love %s.\n", place1);
19 else
20 printf("I love %s.\n", place2);

21 /* free(pp); */
22 /* pq = NULL; */
23 /* printf("Where is %s?!", pq);*/
24 /* free(place2); */

25 return 0;
26 }

As a reminder:

For sizes of various types on armlab , see the relevant handout from precept 4.

The library functions have the following calling conventions:

void *malloc(size_t size);
void free(void *ptr);
char *strcpy (char *destination, const char *source);

Q4.1
1 Point

How many bytes are allocated on the stack frame for the main function in this program?

(Don’t worry about alignment or padding.)

47

https://www.cs.princeton.edu/courses/archive/spr22/cos217/precepts/04fund_multifile/sizes.c

EXPLANATION

int k : 4

char place1[ARRAY_LENGTH] : 11

char *place2 : 8

const char *place3 : 8

char *pp : 8

char *pq : 8

note that the no memory is allocated on line 5, as no variable is declared when

declaring the anonymous enumeration type with enumerator constant

 ARRAY_LENGTH .

Q4.2
1 Point

How many bytes are allocated on the heap in this program? (Don’t worry about alignment

or padding, and assume that all calls to malloc succeed.)

24

EXPLANATION

Each of the two calls to malloc allocates 12 bytes (ARRAY_LENGTH +1) from the heap.

Q4.3
1 Point

In which section of the memory is the variable pp stored before line 12 ?

Stack

EXPLANATION

It is a local variable. Until precept 14, when we see the static keyword applied to

local variables, we only know one place for local variables: the stack.

Q4.4
1 Point

In which section of the memory is the variable pp stored after line 12 ?

Stack

EXPLANATION

It is still a local variable. Its value at this point is now a pointer into the heap, but the

memory for pp itself is still on the stack.

Q4.5
6 Points

In which section(s) of the memory are the following strings stored:

A. Princeton

Stack, Heap

EXPLANATION

On line 7, place1 is a compile-time defined array local variable, and thus its

contents -- the string "Princeton" defined one character at a time by the initializer list

-- are contained on its function's stackframe.

On line 13, the contents of the place1 array are copied into the location pointed to

by pp via the call to strcpy . pp points at an address returned from malloc on

line 12, and thus, the string "Princeton" is copied into the heap.

B. Kingston

RODATA

EXPLANATION

On line 9, "Kingston" is a string literal. String literals are found in the RODATA

section. The local variable place2 is on the stack, but its value is not the contents of

the string but instead the address in RODATA.

C. Queenston

RODATA, Heap

EXPLANATION

On line 10, "Queenston" is a string literal, and thus found in the RODATA section.

On line 15, the contents of the string to which place3 points (the string in the

RODATA section) are copied into the location pq points, which is an address

returned from malloc on line 14 and thus in the heap.

Q4.6
1 Point

What is the value of the variable k after line 06 ?

5

EXPLANATION

Integer division 11/2 truncates 5.5 to 5.

Q4.7
1 Point

What is printed to stdout by lines 17-20 in the program ?

I love Kingston.

EXPLANATION

Notice that in line 16, pp is pointed to the same thing pq points to. Thus, it no

longer points to the string "Princeton" , but instead the string "Queenston" in the

heap.

place1[k] is the 'e' in "Princeton" . pp[k] is the 's' in "Queenston" . Thus,

we take the alternative in the if statement and print the statement about place2 .

Q4.8
1 Point

How many bytes of memory leak does this program have (as shown)?

24

EXPLANATION

There are no calls to free , thus all the dynamically allocated memory is leaked.

Q4.9
1 Point

Suppose we uncomment the code at line 21 .

How many bytes of memory leak does the program have now?

12

EXPLANATION

Calling free on line 21 would free the memory allocated on line 14, because pp is

now an alias to pq . The memory allocated on line 12, to which pp originally pointed,

is still leaked.

Q4.10
2 Points

Suppose we now uncomment the code at line 23 also, i.e., lines 21 and 23 are both

uncommented.

Choose all the following options that apply.

EXPLANATION

pp is an alias to pq , and thus the free on line 21 freed the string pq points to.

Thus, passing pq to printf will result in dereferencing a dangling pointer: a

memory management bug.

The contents of the freed memory, however, is not guaranteed. It is possible that it

may still contain the string "Queenston".

Q4.11
2 Points

Suppose we now uncomment the code at line 22 also, i.e., lines 21-23 are

uncommented.

Choose all the following options that apply.

The program compiles with a warning.

There is no bug and the program executes successfully (i.e., without failure).

There is at least one bug, and the program definitely aborts.

There is at least one bug, but the program may not abort.�

The program may print something to stdout at line 23 .�

The program may print Where is Queenston?! to stdout at line 23 .�

EXPLANATION

pp is an alias to pq , and thus the free on line 21 freed the string pq points to.

Setting pq to NULL on line 22 averts the risk of dereferencing a dangling pointer.

But passing pq to printf is still a bug, however, since pq is no longer a pointer to

a string.

The result will be compiler-dependent. gcc prints (null) as the result for the

format specifier %s , but other implementations may unconditionally dereference

the argument, resulting in a segmentation fault.

Q4.12
2 Points

Finally, suppose we now uncomment the code at line 24 also, i.e., all lines 21-24 are

uncommented.

Choose all the following options that apply.

The program compiles with a warning.

There is no bug and the program executes successfully (i.e., without failure).

There is at least one bug, and the program definitely aborts.

There is at least one bug, but the program may not abort.�

The program may print something to stdout at line 23 .�

The program may print Where is Queenston?! to stdout at line 23 .

EXPLANATION

Calling free on something not in the heap is a memory management error. In this

case, a value in RODATA is passed to free , which will certainly crash.

Q5 No stresslessness for "possessionlessness"
5 Points

In each subquestion you will consider an implementation of the following function, which

is another member of the string.h interface that you worked with in Assignment 2:

char* strrchr(const char* s, int c)

This function locates the last (i.e., highest address) occurrence of c (converted to a char)

in the string pointed to by s . It returns a pointer to the located character or NULL if the

character does not appear in the string. The terminating nullbyte is considered to be part

of the string; therefore if c is '\0' , the function locates the terminating '\0' .

Q5.1
1 Point

01 char* strrchr1(const char* s, int c) {
02 char* ret = NULL;
03 assert(s != NULL);
04 while(*s) {

The program compiles with a warning.

There is no bug and the program executes successfully (i.e., without failure).

There is at least one bug, and the program definitely aborts.�

There is at least one bug, but the program may not abort.

The program may print something to stdout at line 23 .�

The program may print Where is Queenston?! to stdout at line 23 .

05 if(*s == c)
06 ret = s;
07 s++;
08 }
09 if(!c)
10 ret = s;
11 return ret;
12 }

When compiled with gcc217 , strrchr1 :

EXPLANATION

Lines 6 and 10 assign s , which is a const char* into ret , which is a char* . This

is reducing the const restriction, and thus we must "cast away constness" in order

to avoid a warning.

Other than that, the function works perfectly:

line 4 bounds the traversal to stop at the nullbyte (because '\0' has value 0, an

which is false)

line 5 keeps track of the most recent location of c in the pointer ret

line 7 advances s one character at a time in the traversal

after the loop, there is a special-case check for if c is the nullbyte (because the

loop ends when s points to '\0')

line 11 returns ret , which will be the most recently found c , or NULL if c was

never found.

Q5.2
1 Point

01 char* strrchr2(const char s[], int c) {
02 size_t ret = 0;
03 size_t i = 0;

compiles with no warnings or errorsý

produces an error on line 4ý

produces an error on line 9ý

produces warnings on lines 6 and 10ź

produces a warning on line 11ý

more than one of the aboveý

04 assert(s != NULL);
05 while(s[i] != '\0') {
06 if(s[i] == c)
07 ret = i;
08 i++;
09 }
10 if(c == '\0')
11 ret = i;
12 return (char*) &s[ret];
13 }

strrchr2 produces the correct answer for:

EXPLANATION

Correct behavior: any string that contains c .

Incorrect behavior: any string that does not contain c . In this case, it returns the

address of the 0th character.

Q5.3
1 Point

01 char* strrchr3(const char s[], int c) {
02 size_t i = 0;
03 assert(s != NULL);
04 while(s[i] != '\0') {
05 if(s[i] == c)
06 return (char*) &s[i];
07 i++;
08 }
09 if(c == '\0')
10 return (char*) &s[i];
11 return NULL;
12 }

all possible strings s and characters cý

all possible strings s and characters c , but not efficiently (as defined in A2)ý

some, but not all, possible strings s and characters cź

only the empty string sý

no strings sý

strrchr3 produces the correct answer for:

EXPLANATION

Correct behavior: any string that does not contain c or contains c only 1 time.

Incorrect behavior: any string that contains c multiple times. In this case, it returns

the address of the first instance, not the last instance of c .

Q5.4
1 Point

01 char* strrchr4(const char s[], int c) {
02 size_t i = strlen(s);
03 char* p = NULL;
04 for(; i > 0; i--) {
05 if(s[i] == c)
06 return (char*) &s[i];
07 }
08 if(s[0] == c)
09 return (char*) &s[i];
10 return p;
11 }

strrchr4 produces the correct answer for:

all possible strings s and characters cý

all possible strings s and characters c , but not efficiently (as defined in A2)ý

some, but not all, possible strings s and characters cź

only the empty string sý

no strings sý

all possible strings s and characters cý

all possible strings s and characters c , but not efficiently (as defined in A2)ź

some, but not all, possible strings s and characters cý

only the empty string sý

no strings sý

EXPLANATION

 This algorithm does work correctly, but strlen traverses the entire string s then the

for loop traverses s again in the opposite direction, making this a two-pass

algorithm for something that can be done in a single traversal.

Q5.5
1 Point

01 char* strrchr5(const char* s, int c) {
02 const char* ret = NULL;
03 assert(s != NULL);
04 while(*s != '\0') {
05 if(*s == c)
06 ret = s;
07 s++;
08 }
09 if(c == '\0')
10 return (char*) s;
11 return (char*) ret;
12 }

strrchr5 produces the correct answer for:

all possible strings s and characters cź

all possible strings s and characters c , but not efficiently (as defined in A2)ý

some, but not all, possible strings s and characters cý

only the empty string sý

no strings sý

EXPLANATION

 This is a correct implementation, very similar to strrchr1 in Q5.1 except with:

less terse comparisons on lines 4 and 9

the const keyword on the traversing pointer ret

correct casting away of const ness where necessary

Consider two cases: c is '\0' , and c is anything else:

In the general case, the loop tracks the last occurrence of c in ret , and breaks at

the terminating nullbyte, after which we cast away const ness from ret and return.

For the special case, since the loop was advancing s during its traversal, the

function can just return s (again after casting away const ness) since it points to

the character at which the loop broke: the trailing nullbyte.

Q6 Sort out this mess!
8 Points

The following function isSorted should return 1 (true) if the argument array a of n

integer elements is sorted in ascending order, i.e., its elements are in non-decreasing

order, and 0 (false) otherwise.

However, it has several bugs.

1 int isSorted(int *a, size_t n){
2 size_t i;
3 int check;

4 /* add assert statement(s) here */

5 for (i=0; i < n; i++)
6 check = a[i] <= a[++i];
7 return check;
8 }

Q6.1
2 Points

To start with, add any missing assert statements at line 4 . You can assume that the

header file assert.h has been included.

assert(a != NULL);

(Note: the missing assert(s) are not bugs per se -- adding them is recommended for

testing code modularly.)

EXPLANATION

The function dereferences a by accessing a[i] , thus we must assert that a is

not NULL .

This is the only validation we should do, because we cannot validate that a has n

elements, and there is no sensible check on n 's value, as it is unrestricted.

Note that because n is of type size_t , checking n >= 0 results in a compiler

warning that the comparison is always true.

Q6.2
6 Points

Now identify up to three different bugs.

For each bug, describe the effect of the bug (concisely) and suggest a fix.

Assume that all required C header files are included, and don’t worry about comments,

efficiency, error checking, or style.

Bug 1:

Effect (concise explanation):

Suggested fix (show the fixed code, with line numbers):

Bug 2:

Effect (concise explanation):

Suggested fix (show the fixed code, with line numbers):

Bug 3:

Effect (concise explanation):

Suggested fix (show the fixed code, with line numbers):

EXPLANATION

There are four definite bugs in this code and one additional potential bug.

Bug 0: check is not initialized, so if the loop never executes, i.e., the array is a 0-

element array or a 0- or 1-element array after fixing bug 2, the value returned will

not be well defined. The fix is to initialize check to 1 (or any other true value)

before the loop. We choose a true value because an array with 0 or 1 elements is

trivially sorted.

Bug 1. i updates twice per iteration, which results in skipping some comparisons

(e.g. elements 0 and 1 are compared, and elements 2 and 3 are compared, but

elements 1 and 2 are not.) The easiest fix is accessing the subsequent element

using i+1 not ++i on line 6. An alternative equivalent fix would be to remove the

update step from the loop signature on line 5.

Bug 2. The loop bounds in line 5 will cause the array to be accessed out of bounds

in accessing the subsequent element, which will be a[n] in line 6 (whether as

 a[++i] or a[i+1]). The fix is to bound the loop by i < n-1 .

Bug 3. The value of check is reset each time through the loop, so the value

returned is the check from the final comparison only. There are two easy ways to

fix this: accumulate check with & or && or * so that if any individual comparison is

ever false check will remain false forever; or immediately return false if check ever

becomes 0, so the loop will only complete if all comparisons are true.

Possible Bug 4. The compiler emits a warning that the order of accessing the two

sides of the comparison in line 6 is not defined by the C standard. If the comparison

is processed left-to-right it gets the desired behavior (which is the case on armlab),

but if the comparison is processed right-to-left it ends up comparing each item with

itself.

THE END

Q7
0 Points

Q8
0 Points

Christopher Moretti

