
0/33 Questions Answered

COS 217 Midterm Exam

Q1 Instructions and Pledge
2 Points

This exam consists of five multi-part questions (plus the pledge), and you have

60 minutes — budget your time wisely.

This is a partially "open-book" exam, with these allowances:

you may refer to the course's textbooks and the course materials found on or

linked directly from the course's website.

you may refer to your own notes and assignment solutions.

you may use blank paper as scratch space, but you must enter your answer

in the online system in order to receive credit.

In contrast to the allowances above, this exam has these restrictions:

You may not access other information on the Internet.

You may not compile or run any code on armlab or any other machine.

You are not allowed to communicate with any other person, whether inside

or outside the class. You may not send the exam problems to anyone, nor

receive them from anyone, nor communicate any information about the

problems or their topics. Because students may be taking the exam late, this

applies from when you take the exam until the sample solution has been

published.

The only form of allowable help from any person is that if you have technical

issues or need to ask a clarifying question about the wording of some

problem, you may post a private message on Ed for the course staff to

answer at their discretion.

STUDENT NAME

Search students by name or email…

This examination is administered under the Princeton University Honor Code,

and by signing the pledge below you promise that you have adhered to the

instructions above.

Please type out the Honor Code pledge exactly as follows, including this
exact spelling and punctuation:

I pledge my honor that I have not violated the Honor Code during this
examination.

Enter your answer here

Now type your name as a signature confirming that you have adhered to the
Honor Code:

Enter your answer here

Save Answer

Q2 Teeny-tiny Computer
10 Points

Suppose we have a 6-bit computer. Answer the following questions.

Q2.1
2 Points

What is the largest unsigned number that can be represented in 6 bits?

In Binary:

Enter your answer here

In Hexadecimal:

Enter your answer here

Save Answer

Q2.2
2 Points

What is the smallest (i.e., most negative) signed number represented in 2’s

complement in 6 bits?

In Binary:

Enter your answer here

In Decimal:

Enter your answer here

Save Answer

Q2.3
6 Points

When doing signed arithmetic using 2’s complement representation in 6 bits,

consider the following three operations, where the first number is -12 and the

second number is some positive number.

For each operation, indicate (Yes/No) whether it is possible for the result to

overflow?

If an overflow is possible, provide an example that shows the second number in

decimal (you don’t need to show the result).

If an overflow is not possible, say “None” (no explanation is needed).

�. Addition

Example of second number:

Enter your answer here

�. Subtraction

Example of second number:

Enter your answer here

�. Multiplication

Example of second number:

Enter your answer here

Save Answer

Q3 Any Portability in a Storm
10 Points

Each subquestion should be considered in the context of appearing in main

after the following definitions:

struct S {
 char c;
 int i;
};

Yes

No

Yes

No

Yes

No

int iPlusOne(struct S s) {
 s.i++;
 return s.i;
}

int main(void) {
 char c;
 int i, j;
 unsigned int k;
 long l;
 struct S s = {'a', 2};

Q3.1
1 Point

This set of subquestions considers the following code:

 i = iPlusOne(s) + iPlusOne(s);

Executing on armlab , what is the value of the int i after its assignment?

Enter your answer here

Save Answer

Q3.2
1 Point

Is this resulting value of i portable (i.e., would it be the same on any system

running C90)?

Save Answer

Q3.3
1 Point

yes

no

Is the size of i portable (i.e., would it be the same on any system running

C90)?

Save Answer

Q3.4
1 Point

Is the size of s portable (i.e., would it be the same on any system running

C90)?

Save Answer

Q3.5
1 Point

This set of subquestions considers the following code:

 c = '\0';
 c--;
 j = c;

Executing on armlab , what is the value of the int j after its assignment?

Enter your answer here

Save Answer

Q3.6
1 Point

yes

no

yes

no

Is this value of j portable to any system with character encodings using ASCII?

Save Answer

Q3.7
1 Point

Is the size of the char c portable (i.e., would it be the same on any system

running C90)?

Save Answer

Q3.8
1 Point

This set of subquestions considers the following code:

 k = 0U;
 l = 1L;
 if(k = l-1)
 k++;
 else
 k--;
 ++k;

Executing on armlab , what is the value of the unsigned int k after this

snippet?

Enter your answer here

Save Answer

yes

no

yes

no

Q3.9
1 Point

Is this resulting value of k portable (i.e., would it be the same on any system

running C90)?

Save Answer

Q3.10
1 Point

Is the size of the long l portable (i.e., would it be the same on any system

running C90)?

Save Answer

Q4 Places with Character (or not!)
20 Points

Consider the following C program, where some lines (21-24) are commented

out initially.

Assume that all calls to malloc succeed (and you don't need to check this).

01 #include <stdio.h>
02 #include <stdlib.h>
03 #include <string.h>

04 int main(void) {
05 enum {ARRAY_LENGTH = 11};
06 int k = ARRAY_LENGTH / 2;
07 char place1[ARRAY_LENGTH] =
08 {'P', 'r', 'i', 'n', 'c', 'e', 't', 'o', 'n', '\0'};
09 char *place2 = "Kingston";
10 const char *place3 = "Queenston";

yes

no

yes

no

11 char *pp, *pq;

12 pp = (char *) malloc((ARRAY_LENGTH + 1) * sizeof(char));
13 strcpy(pp, place1);
14 pq = (char *) malloc((ARRAY_LENGTH + 1) * sizeof(char));
15 strcpy(pq, place3);
16 pp = pq;

17 if (place1[k] == pp[k])
18 printf("I love %s.\n", place1);
19 else
20 printf("I love %s.\n", place2);

21 /* free(pp); */
22 /* pq = NULL; */
23 /* printf("Where is %s?!", pq);*/
24 /* free(place2); */

25 return 0;
26 }

As a reminder:

For sizes of various types on armlab , see the relevant handout from

precept 4.

The library functions have the following calling conventions:

void *malloc(size_t size);
void free(void *ptr);
char *strcpy (char *destination, const char *source);

Q4.1
1 Point

How many bytes are allocated on the stack frame for the main function in this

program? (Don’t worry about alignment or padding.)

Enter your answer here

Save Answer

Q4.2

https://www.cs.princeton.edu/courses/archive/spr22/cos217/precepts/04fund_multifile/sizes.c

1 Point

How many bytes are allocated on the heap in this program? (Don’t worry about

alignment or padding, and assume that all calls to malloc succeed.)

Enter your answer here

Save Answer

Q4.3
1 Point

In which section of the memory is the variable pp stored before line 12 ?

Enter your answer here

Save Answer

Q4.4
1 Point

In which section of the memory is the variable pp stored after line 12 ?

Enter your answer here

Save Answer

Q4.5
6 Points

In which section(s) of the memory are the following strings stored:

A. Princeton

Enter your answer here

B. Kingston

Enter your answer here

C. Queenston

Enter your answer here

Save Answer

Q4.6
1 Point

What is the value of the variable k after line 06 ?

Enter your answer here

Save Answer

Q4.7
1 Point

What is printed to stdout by lines 17-20 in the program ?

Enter your answer here

Save Answer

Q4.8
1 Point

How many bytes of memory leak does this program have (as shown)?

Enter your answer here

Save Answer

Q4.9
1 Point

Suppose we uncomment the code at line 21 .

How many bytes of memory leak does the program have now?

Enter your answer here

Save Answer

Q4.10
2 Points

Suppose we now uncomment the code at line 23 also, i.e., lines 21 and 23

are both uncommented.

Choose all the following options that apply.

Save Answer

Q4.11
2 Points

Suppose we now uncomment the code at line 22 also, i.e., lines 21-23 are

uncommented.

Choose all the following options that apply.

The program compiles with a warning.

There is no bug and the program executes successfully (i.e., without

failure).

There is at least one bug, and the program definitely aborts.

There is at least one bug, but the program may not abort.

The program may print something to stdout at line 23 .

The program may print Where is Queenston?! to stdout at line 23 .

Save Answer

Q4.12
2 Points

Finally, suppose we now uncomment the code at line 24 also, i.e., all lines

 21-24 are uncommented.

Choose all the following options that apply.

Save Answer

The program compiles with a warning.

There is no bug and the program executes successfully (i.e., without

failure).

There is at least one bug, and the program definitely aborts.

There is at least one bug, but the program may not abort.

The program may print something to stdout at line 23 .

The program may print Where is Queenston?! to stdout at line 23 .

The program compiles with a warning.

There is no bug and the program executes successfully (i.e., without

failure).

There is at least one bug, and the program definitely aborts.

There is at least one bug, but the program may not abort.

The program may print something to stdout at line 23 .

The program may print Where is Queenston?! to stdout at line 23 .

Q5 No stresslessness for "possessionlessness"
5 Points

In each subquestion you will consider an implementation of the following

function, which is another member of the string.h interface that you worked

with in Assignment 2:

char* strrchr(const char* s, int c)

This function locates the last (i.e., highest address) occurrence of c (converted

to a char) in the string pointed to by s . It returns a pointer to the located

character or NULL if the character does not appear in the string. The

terminating nullbyte is considered to be part of the string; therefore if c is

 '\0' , the function locates the terminating '\0' .

Q5.1
1 Point

01 char* strrchr1(const char* s, int c) {
02 char* ret = NULL;
03 assert(s != NULL);
04 while(*s) {
05 if(*s == c)
06 ret = s;
07 s++;
08 }
09 if(!c)
10 ret = s;
11 return ret;
12 }

When compiled with gcc217 , strrchr1 :

Save Answer

Q5.2
1 Point

01 char* strrchr2(const char s[], int c) {
02 size_t ret = 0;
03 size_t i = 0;
04 assert(s != NULL);
05 while(s[i] != '\0') {
06 if(s[i] == c)
07 ret = i;
08 i++;
09 }
10 if(c == '\0')
11 ret = i;
12 return (char*) &s[ret];
13 }

strrchr2 produces the correct answer for:

Save Answer

compiles with no warnings or errors

produces an error on line 4

produces an error on line 9

produces warnings on lines 6 and 10

produces a warning on line 11

more than one of the above

all possible strings s and characters c

all possible strings s and characters c , but not efficiently (as defined in A2)

some, but not all, possible strings s and characters c

only the empty string s

no strings s

Q5.3
1 Point

01 char* strrchr3(const char s[], int c) {
02 size_t i = 0;
03 assert(s != NULL);
04 while(s[i] != '\0') {
05 if(s[i] == c)
06 return (char*) &s[i];
07 i++;
08 }
09 if(c == '\0')
10 return (char*) &s[i];
11 return NULL;
12 }

strrchr3 produces the correct answer for:

Save Answer

Q5.4
1 Point

01 char* strrchr4(const char s[], int c) {
02 size_t i = strlen(s);
03 char* p = NULL;
04 for(; i > 0; i--) {
05 if(s[i] == c)
06 return (char*) &s[i];
07 }
08 if(s[0] == c)
09 return (char*) &s[i];
10 return p;
11 }

all possible strings s and characters c

all possible strings s and characters c , but not efficiently (as defined in A2)

some, but not all, possible strings s and characters c

only the empty string s

no strings s

strrchr4 produces the correct answer for:

Save Answer

Q5.5
1 Point

01 char* strrchr5(const char* s, int c) {
02 const char* ret = NULL;
03 assert(s != NULL);
04 while(*s != '\0') {
05 if(*s == c)
06 ret = s;
07 s++;
08 }
09 if(c == '\0')
10 return (char*) s;
11 return (char*) ret;
12 }

strrchr5 produces the correct answer for:

Save Answer

all possible strings s and characters c

all possible strings s and characters c , but not efficiently (as defined in A2)

some, but not all, possible strings s and characters c

only the empty string s

no strings s

all possible strings s and characters c

all possible strings s and characters c , but not efficiently (as defined in A2)

some, but not all, possible strings s and characters c

only the empty string s

no strings s

Q6 Sort out this mess!
8 Points

The following function isSorted should return 1 (true) if the argument array

 a of n integer elements is sorted in ascending order, i.e., its elements are in

non-decreasing order, and 0 (false) otherwise.

However, it has several bugs.

1 int isSorted(int *a, size_t n){
2 size_t i;
3 int check;

4 /* add assert statement(s) here */

5 for (i=0; i < n; i++)
6 check = a[i] <= a[++i];
7 return check;
8 }

Q6.1
2 Points

To start with, add any missing assert statements at line 4 . You can assume that

the header file assert.h has been included.

Enter your answer here

(Note: the missing assert(s) are not bugs per se -- adding them is recommended

for testing code modularly.)

Save Answer

Q6.2
6 Points

Now identify up to three different bugs.

For each bug, describe the effect of the bug (concisely) and suggest a fix.

Assume that all required C header files are included, and don’t worry about

comments, efficiency, error checking, or style.

Bug 1:

Effect (concise explanation):

Enter your answer here

Suggested fix (show the fixed code, with line numbers):

Enter your answer here

Bug 2:

Effect (concise explanation):

Enter your answer here

Suggested fix (show the fixed code, with line numbers):

Enter your answer here

Bug 3:

Effect (concise explanation):

Enter your answer here

Suggested fix (show the fixed code, with line numbers):

Enter your answer here

THE END

Save Answer

Save All Answers Submit & View Submission

