
Q1 Instructions and Pledge
1 Point

This exam consists of 5 multi-part questions (plus the pledge), and you have 60 minutes --

budget your time wisely.

This is a closed-book, closed-note exam, and "cheat sheets" are not allowed. During the exam

you must not refer to the textbook, course materials, notes, or any information on the Internet.

You may not compile or run any code on armlab or any other machine.

You are not allowed to communicate with any other person, whether inside or outside the class.

You may not send the exam problems to anyone, nor receive them from anyone, nor

communicate any information about the problems or their topics. If you have technical issues or

need to ask a clarifying question about the wording of some problem, please post a private

message on Ed.

You may use blank paper as scratch space, but you must enter your answer in the online system

in order to receive credit.

This examination is administered under the Princeton University Honor Code, and by signing

the pledge below you promise that you have adhered to the instructions above.

Please type out the Honor Code pledge exactly as follows, including this exact spelling and

punctuation:

I pledge my honor that I have not violated the Honor Code during this examination.

I pledge my honor that I have not
violated the Honor Code during this
examination.

Now type your name as a signature confirming that you have adhered to the Honor Code:

Q2 The problems just seem to multiply...
5 Points

We saw in class that the same addition and subtraction algorithms can be used for both

unsigned and signed (two's complement) N-bit binary integers. The purpose of this question is

to demonstrate an example of how this also holds for multiplication, provided that we truncate

the result back to N bits. For this question, we will consider N = 3.

Q2.1

Christopher Moretti
Exam statistics:
Mean: 19.9/25
Median: 20/25
StdDev: 3.7/25�

1 Point

What are the decimal interpretations of the 3-bit binary unsigned integers and ?

EXPLANATION

. .

Q2.2
1 Point

When those two unsigned integers are multiplied, what is the untruncated binary result? (It

might be easier to multiply in decimal and then convert to binary.)

EXPLANATION

.

Q2.3
1 Point

Now, what would be the unsigned 3-bit result? (You may notice that the result is too big for 3

bits, and so it overflows and must be truncated.)

110B 111B

2 and 3

3 and 4

4 and 5

5 and 6

6 and 7

110 =B 4 + 2 = 6 111 =B 4 + 2 + 1 = 7

110

1100

10100

11110

101010

6 × 7 = 42 = 32 + 8 + 2 = 101010B

010

100

101

110

111































EXPLANATION

We take the least-significant (i.e., rightmost) 3 bits of . Or, we can think of this as

 modulo .

Q2.4
1 Point

What are the decimal interpretations of the 3-bit binary two's complement signed integers

and ?

EXPLANATION

We know that both 3-bit values are negative, because they start with a "1" bit. To negate

each one, we complement the bits and then add 1. So, , showing

that is -2, and , showing that is -1.

Q2.5
1 Point

When those two signed integers are multiplied, what is the 3-bit two's complement signed
result?

EXPLANATION

, which is . Notice that this is the same result as in question 2.3.

Q3 What's past is prologue
5 Points

As we learned in class, the sizes of most C datatypes are not fixed by the language and can be

machine-dependent. You've learned about the sizes on ARM64 machines, but the earliest

101010B

42 23

110B

111B

-1 and 0

-2 and -1

-3 and -2

-2 and -3

2 and 3

110 → 001 → 010 = 2
110B 111 → 000 → 001 = 1 111B

000

010

100

110

111

−2 × −1 = 2 010B





















implementation of C was on the PDP-11, with the following sizes:

Type Size in Bytes

char 1

int 2

long 4

pointer 2

size_t 2

* Technically speaking, size_t wasn't introduced into the C language until long after the days of

the PDP-11, but let's suspend disbelief.

Given the above, what would be the value of each of the following expressions on the PDP-11

architecture?

Q3.1
1 Point

sizeof(42)

EXPLANATION

42 is an int .

Q3.2
1 Point

sizeof("42")

Hint: sizeof applied to an array returns the size of the array, not the size of the pointer to the

first element.

1

2

3

4

8

42













EXPLANATION

"42" is a char array consisting of '4' , '2' , and '\0' .

Q3.3
1 Point

sizeof(4 + 2 + 42L)

EXPLANATION

The additions involve int and long quantities, so the result is promoted to a long .

Q3.4
1 Point

sizeof(sizeof(42))

EXPLANATION

The inner sizeof operator yields a value of type size_t .

1

2

3

4

8

42

1

2

3

4

8

42

1

2

3

4

8

42





































Q3.5
1 Point

sizeof(sizeof("42"))

EXPLANATION

The inner sizeof operator yields a value of type size_t .

Q4 So many ways to get it wrong
5 Points

The following functions are each intended to print a C string. They all use the putchar standard

library function to print characters to stdout -- it has the following signature:

int putchar(int c);

Assume that pc is not NULL , and points to a correctly null-terminated string. For each

function, indicate whether it succeeds, or how it fails.

Q4.1
1 Point

void fun1(const char *pc) {

while (*pc != '\0')

putchar(*pc); pc++;

}

1

2

3

4

8

42

Fails to compile.

Enters an infinite loop.

Undefined behavior, may crash with a segmentation fault.

Runs and terminates, but produces incorrect output.

Correctly prints to stdout the string pointed to by pc .























EXPLANATION

The pc++ is not part of the loop, despite the misleading placement on the same line as the

putchar . So, pc is never incremented.

Q4.2
1 Point

void fun2(const char *pc) {

while (*pc != '\0')

putchar((*pc)++);

}

EXPLANATION

Fails to compile because of the attempt to increment *pc , which is declared const .

Q4.3
1 Point

void fun3(const char *pc) {

while (*pc != '\0')

putchar(*(pc++));

}

EXPLANATION

Executes correctly.

Q4.4
1 Point

Fails to compile.

Enters an infinite loop.

Undefined behavior, may crash with a segmentation fault.

Runs and terminates, but produces incorrect output.

Correctly prints to stdout the string pointed to by pc .

Fails to compile.

Enters an infinite loop.

Undefined behavior, may crash with a segmentation fault.

Runs and terminates, but produces incorrect output.

Correctly prints to stdout the string pointed to by pc .





















void fun4(const char *pc) {

while (pc != '\0')

putchar(*(pc++));

}

EXPLANATION

Compares pc , not *pc , to '\0' . The latter is equivalent to 0, which is treated as a null

pointer. But because pc is not NULL , this comparison is always false. As a result, pc is

incremented until it points outside of the program's address space, leading to a segfault.

Q4.5
1 Point

void fun5(const char *pc) {

while (*pc != '\0')

putchar(*(++pc));

}

EXPLANATION

Fails to print the first character, and prints a '\0' at the end.

Q5 Scrambled scrambler
3 Points

Consider the following function:

/* On input: strings str1 and str2 must be the same length.

 After execution: the strings pointed to by str1 and str2

 have been modified in-place such that chars at *even* indices

Fails to compile.

Enters an infinite loop.

Undefined behavior, may crash with a segmentation fault.

Runs and terminates, but produces incorrect output.

Correctly prints to stdout the string pointed to by pc .

Fails to compile.

Enters an infinite loop.

Undefined behavior, may crash with a segmentation fault.

Runs and terminates, but produces incorrect output.

Correctly prints to stdout the string pointed to by pc .





















 (counting from 0) have been swapped between str1 and str2. */

void scramble(char *str1, char *str2)

{

/* Implementation goes here */

}

Here are some examples of the effect of the function, showing the values of strings str1 and

str2 before and after a call to scramble(str1, str2);

str1 before str2 before str1 after str2 after

"a" "I" "I" "a"

"op" "um" "up" "om"

"top" "din" "don" "tip"

"fire" "rock" "rice" "fork"

Your job is to determine the correct sequence of the following 9 lines of code (which are

missing indentation in addition to being scrambled):

1 *str1 = *str2;

2 str1 += 2; str2 += 2;

3 }

4 if (*(str1 - 1) == '\0')

5 while (*str1 != '\0') {

6 char tmp = *str1;

7 assert(str1 != NULL); assert(str2 != NULL);

8 *str2 = tmp;

9 break;

Write the correct order in which those 9 lines of code should appear. Please separate the

numbers by commas, and include no extra punctuation or white space. For example, if you

thought that the statements were exactly reversed, you would write 9,8,7,6,5,4,3,2,1 meaning

that line 9 should appear first, line 8 second, etc.

Order:

7,5,6,1,8,2,4,9,3

EXPLANATION

Here's a guide to a possible thought process behind how to unscramble the code. We start

by observing that, in general, variable declarations and asserts need to come first. We also

recognize that we're going to need a loop - the only candidate is the while on line 5, paired

with the closing brace on line 3. The while loop is checking *str1 , so it's likely that

something within the loop is going to need to advance the str1 pointer - the only candidate

is line 2. We also know that the loop needs to have a swap, and we recognize lines 6, 1, and

8 as a standard pattern for swapping two locations using a temporary variable. This,

incidentally, is something that tripped up a number of students - as we saw a few times in

the class, it is perfectly fine to declare a variable at the beginning of a block, such as the one

after the while , and not just at the beginning of the function. Because there's no way to

write the swap without line 6 inside the loop, we know that there won't be any variable

declarations at the beginning of the function - and so the function will begin with the assert s

on line 7. At this point, we have an outline that looks vaguely like 7,5,__,6,1,8,__,2,__,3,

where we still haven't accounted for lines 4 and 9, and need to verify that 6,1,8 and 2 are in

the correct order relative to each other. By tracing through some simple cases, we see that

the code so far meets the specification for even-length strings, but line 2 steps past the end

of odd-length strings. Adding in 4,9 between 2 and 3 handles this special case.

Q6 ?desreveR
6 Points

Contemplate the following program:

1 #include <stdio.h>

2 #include <stdlib.h>

3 struct Node {

4 char c;

5 struct Node *next;

6 };

7 struct Node *read_it(void) {

8 struct Node *curr = NULL;

9 int c;

10 while ((c = getchar()) != EOF) {

11 struct Node *newnode = calloc(1, sizeof(struct Node));

12 newnode->c = c;

13 newnode->next = curr;

14 curr = newnode;

15 }

16 return curr;

17 }

18 void print_it(struct Node *curr) {

19 if (!curr)

20 return;

21 print_it(curr->next);

22 putchar(curr->c);

23 }

24 int main(void) {

25 print_it(read_it());

26 return EXIT_SUCCESS;

27 }

Recall that getchar returns a character read from stdin , or EOF on end of file, and that

calloc(n, s) allocates storage for n elements of size s and fills the newly-allocated memory

with zeros. Assume that memory allocation always succeeds, and that the maximum

recursion depth is never exceeded.

Q6.1
2 Points

What does the program do?

EXPLANATION

read_it creates a linked list with the characters in reversed order. But then the ordering of

the recursive call in print_it , relative to the putchar , causes the linked list to be printed in

reverse order. The net effect is that characters are printed in the same order in which they

were read.

Q6.2
2 Points

Suppose you now wish to print characters in the opposite order (i.e., reversed if the code prints

them in the original order, or in the original order if the code prints them reversed). Which of the

following changes, if applied individually to the code without other modifications, would achieve

this? Select all changes that would work. Hint: this is subtle. Trace through what happens on,

say, a two-character input.

Reads characters from stdin and then writes them to stdout in the order in which they were

read

Reads characters from stdin and then writes them to stdout , in reverse order

Crashes on all inputs

None of the above

Swap lines 13 and 14

Replace lines 13 and 14 with curr->next = newnode; and curr = curr->next;

Swap lines 21 and 22

Replace lines 21 and 22 with print_it(curr); and putchar(curr->next->c);









EXPLANATION

The first option creates a mangled data structure, with nodes pointing to themselves. The

second option almost works to construct the linked list from front to back, but it

dereferences NULL the first time it is executed and returns the wrong node from read_it .

The third option prints out the linked list in order, hence printing out the original characters

in reversed order. The last option enters an infinite loop.

Q6.3
2 Points

The code as written has a memory leak. How could you fix it?

EXPLANATION

The correct answer frees each node after it will no longer be accessed again. Adding free

at a different location can end up accessing nodes after freeing them. The "change main "

option frees the first node in the linked list, but does not free the remaining nodes.

Add free(curr); immediately above line 16

Add free(curr); immediately above line 19

Add free(curr); immediately above line 21

Add free(curr); immediately above line 22

Add free(curr); immediately above line 23

Change main to save the return value of read_it() , then call free on that value after passing

it to print_it

None of the above will work















