
COS 217, Fall 2023
Midterm Exam

This exam consists of 6 questions, and you have 50 minutes – budget your time wisely. Do all
of your work on these pages (using the back for scratch space), and give the answer in the
space provided. Note that the exams will be scanned and graded online, so ONLY ANSWERS
IN THE BOXES WILL BE GRADED. Assume the ArmLab/Linux/C/gcc217 environment
unless otherwise stated. This is a closed-book, closed-note exam, and only 1 page of notes is
allowed. Please place items that you will not need out of view in your bag or under your
working space at this time. Electronic devices such as cell phones, laptops, tablets, etc. may not
be used during this exam.

Name: NetID: Precept:

P01 MW 1:30 Christopher Moretti P06 TTh 1:30 Gongqi Huang
P02 MW 3:30 Christopher Moretti P07 TTh 2:30 Nanqinqin Li
P03 TTh 12:30 Guðni Nathan Gunnarsson P09 TTh 3:30 Jianan Lu
P04 TTh 12:30 Sam Ginzburg P10 TTh 7:30 Dwaha Daud
P05 TTh 1:30 Indu Panigrahi

This examination is administered under the Princeton University Honor Code. Students should
sit one seat apart from each other, and refrain from talking to other students during the exam. All
suspected violations of the Honor Code must be reported to honor@princeton.edu.

Write out and sign the Honor Code pledge before turning in the test:

“I pledge my honor that I have not violated the Honor Code during this examination.”

Pledge, written out exactly as above:

Sample Solutions

Signature:

Exam Statistics:
Max: 100/100 | Median: 79 | Mean: 77.74 | Standard Deviation:13.17

Page 1 of 10

mailto:honor@princeton.edu

1. Build Process
For each item (a–g below), write the letter of the build stage from the list at the top that
performs the action. Write your answers in the boxes at right. (2 pts ea)

P. Preprocessor

C. Compiler

A. Assembler

L. Linker

Action Build stage (P, C, A, or L)

(a) Removes comments
P (recall from A1 that it
maintains lines’ numbering in
its removal, however)

(b) Generates assembly language from C source code
C (assembly language code is
C’s product and A’s source)

(c) Resolves references to scanf
L (fetches the machine code
for standard library functions
to add to the program)

(d) Checks the declaration of printf
C (checks the declaration of
functions for syntax and that
calls to it match its types)

(e) Generates machine language from assembly code
A (assembly language code is
A’s source, machine language
code is its product)

(f) Produces an executable
L (the final stage in the build
process yields the final
product)

(g) Handles #include <stdio.h>
P (along with other
preprocessor directives like
#define)

Page 2 of 10

2. Two’s Complement

(a) Write the decimal number 14 as a 5-bit unsigned binary number, one bit per box: (2 pts)

0 1

(8) +

1

(4) +

1

(2)

0

(b) Interpreting your answer in part (a) as a 5-bit two’s complement signed number, what is its
decimal value? (2 pts)

14
leftmost bit 0:
non-negative

(c) Write the decimal number 23 as a 5-bit unsigned binary number: (2 pts)

1

(16) +

0 1

(4) +

1

(2) +

1

(1)

(d) Interpreting your answer in part (c) as a 5-bit two’s complement signed number, what is its
decimal value? (2 pts)

–9
(–16+4+2+1
or –(01001))

Page 3 of 10

2. Two’s Complement (cont.)

Sign extension is a procedure to increase the number of bits in a binary number. To perform it,
take the leftmost bit of the original binary number, and add copies of the bit to the left of the
binary number, until you reach the desired number of bits.

(e) Sign-extend your binary number from part (c) – not part (a)! – so that it is 6 bits long, and
write down the resulting binary number. (1 pt)

1 1 0 1 1 1

(f) Interpreting your answer in part (e) as a 6-bit two’s complement signed number, what is its
decimal value? (2 pts)

–9
(–32+16+4+2+1
or –(001001))

(g) Based on your results in (d) and (f), what is the effect of sign extension on the two’s
complement signed value of a binary number? Write one phrase or sentence. (3 pts)

Sign extension preserves the value (including the sign) for any binary number,
when interpreted as a two’s complement signed number.

Page 4 of 10

3. Pointers
Consider the following code:

#include <stdio.h>
void foo(int **ppi1, int **ppi2)
{

int *piTemp;
piTemp = *ppi2;
*ppi2 = *ppi1; /* THIS LINE WILL BE REPLACED IN PART (b) */
*ppi1 = piTemp;

}
int main()
{

int i1 = 10;
int i2 = 20;
int *pi1 = &i1;
int *pi2 = &i2;

foo(&pi1, &pi2);

printf("%d %d %d %d\n", i1, i2, *pi1, *pi2);

return 0;
}

(a) What are the values of i1, i2, *pi1, and *pi2 printed in main()? (2 pts ea)

i1
:

10 (foo swaps
ptr not int vals)

i2: 20 *pi1: 20 (dereference
of swapped ptr)

*pi2: 10 (dereference
of swapped ptr)

(b) For each of the following, would replacing the line *ppi2 = *ppi1; with the proposed code
result in different values being printed in main()? Write yes or no in the boxes at right (2 pts ea)

Replacement for *ppi2 = *ppi1; Different values printed? (yes/no)

*ppi1 = *ppi2; Yes: p1, p2 end up pointing to the same spot

ppi2 = ppi1; Yes: changes foo’s ppi2, not main’s pi2

ppi2[0] = ppi1[0]; No: this is array syntax for the same operation

*&*ppi2 = *&*ppi1; No: * and & are inverse ops, thus cancel out

Page 5 of 10

4. DFA
Construct a DFA that accepts strings consisting only of the letters a and b, satisfying both the
following conditions:

● The string begins with an a
● The string has even length

Draw a DFA satisfying the above requirements in the box below, as follows:

● Each state should be drawn as a circle. You do not have to give the states names, though
doing so may aid in your design process.

● Each transition should be an arrow labeled with one or both of the letters a and b. You
do not need to worry about any inputs other than the letters a and b.

● Clearly indicate the start state.
● Clearly indicate the accept state(s).

Hint: the minimal DFA for this task consists of 4 states. (14 pts)

Page 6 of 10

5. Operators and operations

For each of the following code snippets, what output is printed? Please write your answers in
the boxes to the right of the code snippets. Write “BAD” if the code results in a compiler error,
an infinite loop, or an uninitialized value being printed. On the next page is a C operator table,
for reference. (2 pts ea)

(a)
int i = 260;
unsigned char c = i;
printf("%d\n", c);

4: 260 > 255 (max unsigned
char): overflow. 260 % 256 == 4

(b)
int i, j = 0;
for (i = 0; i < 10; i += 2)

j += i % 2;
printf("%d\n", j);

0: loop executes at i values {0,
2, 4, 6, 8}. i%2 == 0 for all
those, so j is never changed.

(c)
int i = 4, j = 0;
while (i –= 2)

j += ++i;
printf("%d\n", j);

5: i←2 (-=), non-zero∴do
body: i←3, j←3. i←1 (-=)∴do
body: i←2, j←5. i←0
(-=)∴end

(d)

int select = 2;
switch (select) {

case 1: printf(“one\n”);
case 2: printf(“two\n”);
case 3: printf(“three\n”);
default: printf(“other\n”);

}

two
three
other
there are no break statements,
so case fallthrough occurs

(e) printf("%d\n", 2 == 2 + 2);
0: per table on page 8,
this is equivalent to 2 == (2+2)

(f) printf("%d\n", 2 == 2 | 2);
3: equivalent to (2 == 2) | 2,
1 | 2 is: 0..01 | 0..10 = 0..11

(g) printf("%d\n", ~3 & 5); 4: 3 is 0..011, so ~3 is 1..100
1..100 & 0..101 = 0..100 = 4.

Page 7 of 10

Reference for Question 5:
C operators, in order of precedence (highest to lowest), with their associativity

() (function call)
[] . ->
++ -- (postfix)

Left-to-right

++ -- (prefix)
& * (address-of and pointer dereference)
+ - (unary plus and minus)
~ ! sizeof

Right-to-left

() (cast) Right-to-left

* / % (multiplication, division, remainder) Left-to-right

+ - (addition, subtraction) Left-to-right

<< >> Left-to-right

< > <= >= Left-to-right

== != Left-to-right

& (bitwise and) Left-to-right

^ (bitwise xor) Left-to-right

| (bitwise or) Left-to-right

&& Left-to-right

|| Left-to-right

?: Right-to-left

= *= /= %= += -= <<= >>= &= ^= |= Right-to-left

, Left-to-right

Reference for Question 6:
Information on standard library string functions

size_t strlen(const char *s);
Returns the length of the string pointed to by s, excluding the terminating null byte ('\0').

char *strcpy(char *dest, const char *src);

Copies the string from src, including the terminating null byte, to dest. Returns dest.

Page 8 of 10

6. Strings
In this problem you will consider multiple versions of this function:

/*

Exchanges the contents of the two string arguments, s1 and s2.

Precondition: strlen(s1) == strlen(s2).

*/

void strswap(char *s1, char *s2);

For example, if the caller's strings' contents are initially:

s1: {'h','o','u','s','e','\0'}

s2: {'g','u','e','s','t','\0'}

then after strswap(s1, s2); returns to the caller, they should be:

s1: {'g','u','e','s','t','\0'}

s2: {'h','o','u','s','e','\0'}

(a) Write a strswap() implementation in the box below. Your code must not call any functions,
but must include two asserts checking the parameters (though not the precondition). (20 pts)

void strswap(char *s1, char *s2)

{

assert(s1 != NULL);

assert(s2 != NULL);

while(*s1 != '\0') { /* precondition allows checking only 1 string */

char cTemp = *s1;

*s1 = *s2;

*s2 = cTemp;

s1++;

s2++;

}

/* no need to swap '\0' with '\0' after loop */

}

Page 9 of 10

6. Strings (cont.)
Now consider the following incorrect implementations of strswap(). Refer to page 8 for
information on strlen and strcpy. When passed two strings with different contents satisfying
the precondition, indicate in the box at right whether each:

A. results in a compiler error or warning

B. builds cleanly, but never results in successfully swapped strings

C. results in successfully swapped strings sometimes but not always

Write exactly one of the letters A, B, or C in the box at right. Hint: pay attention to the
bolded-and-italicized text above. It matters. (2 pts ea)

Code Result (A – C)

(b)

char temp[strlen(s1)+1];

strcpy(temp, s1);

strcpy(s1, s2);

strcpy(s2, temp);

A: temp’s declaration causes
a compiler warning “ISO C90
forbids variable length array”,
since its length is not known
at compile time.

(c)

char *temp = s1;

s1 = s2;

s2 = temp;

B: this swaps strswap’s
pointer parameters, but has no
impact on the strings they
reference in the caller.

(d)

char temp = *s1;

*s1 = *s2;

*s2 = temp;

C: this swaps the 0th char of
the strings, so it works if and
only if their only difference is
that character.

(e)

while ((*s1++ = *s2++) != '\0') {

char temp = *s1;

*s1 = *s2;

*s2 = temp;

}

B: this causes both strings to
end up with identical
contents. Because they
initially have different
contents, this means they
cannot have been swapped.

Page 10 of 10

