
Q1 Instructions and Pledge
1 Point

This exam consists of 6 multi-part questions (plus the pledge), and you have

60 minutes — budget your time wisely.

This is a closed-book, closed-note exam, and "cheat sheets" are not

allowed. During the exam you must not refer to the textbook, course

materials, notes, or any information on the Internet. You may not compile or

run any code on armlab or any other machine.

You are not allowed to communicate with any other person, whether inside

or outside the class. You may not send the exam problems to anyone, nor

receive them from anyone, nor communicate any information about the

problems or their topics. If you have technical issues or need to ask a

clarifying question about the wording of some problem, please post a

private message on Ed.

You may use blank paper as scratch space, but you must enter your answer

in the online system in order to receive credit.

This examination is administered under the Princeton University Honor

Code, and by signing the pledge below you promise that you have adhered

to the instructions above.

Please type out the Honor Code pledge exactly as follows, including this

exact spelling and punctuation:

I pledge my honor that I have not violated the Honor Code during this

 Add Question 7.6

 Add Question 8

Save Assignment

Christopher Moretti
Exam statistics:
Mean: 25.13/33
Median: 26/33
StdDev: 4.97/33
Rough letter mapping:
27-33 is some kind of A, 20-26 is some kind of B, 13-19 is some kind of C.�

examination.

I pledge my honor that I have not
violated the Honor Code during this

examination.

Now type your name as a signature confirming that you have adhered to

the Honor Code:

Q2 Yes, it's the usual binary arithmetic question...
6 Points

Consider the following binary addition problem on 4-bit quantities:

Q2.1
1 Point

What is the 4-bit binary result of the addition?

(Write only the 4 bits, with no extra white space, punctuation, or text.)

1000

EXPLANATION

The full result of the binary addition is , which is truncated to the

least-significant (rightmost) 4 bits.

Q2.2
1 Point

Interpreting the 4-bit result as an unsigned number, what is its decimal

1011 +B 1101 =B ?

11000B

value?

(Write only the value, with no extra white space, punctuation, or text.)

8

EXPLANATION

The addition problem is 11 + 13 = 24, and the truncation to 4 bits is

equivalent to taking the result modulo 16. This results in 8, which is

indeed the decimal value of .

Q2.3
1 Point

If the addition is interpreted as unsigned, it overflows:

EXPLANATION

The correct result was too big to be represented in 4 bits.

Q2.4
1 Point

Interpreting the result as a 4-bit two's complement signed number, what is

its decimal value?

(Write only the value, with no extra white space, punctuation, or text.)

-8

1000B

True

False

EXPLANATION

The addition problem is -5 + -3 = -8. Again, the latter corresponds to the

4-bit two's complement interpretation of . Note that the result

happens to be the "extra" negative two's complement number that has

no positive counterpart in 4-bit two's complement.

Q2.5
1 Point

If the addition is interpreted as signed, it overflows:

EXPLANATION

The result is correctly representable in 4 bits.

Q2.6
1 Point

Overflow in an addition results in:

EXPLANATION

No checking for overflow is performed. Ever.

Q3 Mismanaged memory
4 Points

1000B

True

False

A compiler error

A compiler warning

A run-time crash

None of the above

Consider the following code:

1 int main()

2 {

3 int *numbers;

4 numbers = malloc(sizeof(int));

5 numbers = calloc(10, sizeof(int));

6 numbers = realloc(numbers, 20 * sizeof(int));

7 return 0;

8 }

As a reminder, the memory allocation functions have the following calling

conventions:

void *malloc(size_t size);

void *calloc(size_t n_elements, size_t size_per_element);

void *realloc(void *ptr, size_t size);

void free(void *ptr);

Q3.1
2 Points

Assuming that all appropriate header files have been included, and that all

calls to memory management functions succeed, how many bytes of

memory are leaked by the original code?

0

4

40

44

80

84

124

EXPLANATION

The pointer from the first malloc is lost, so we leak 4 bytes there. The

memory allocated by the calloc is correctly freed, if necessary, when

the realloc succeeds. However, we never free memory from the

realloc , so we leak an additional 20*4=80 bytes.

Q3.2
2 Points

Which statement/statements need to be added to prevent all memory

leaks?

EXPLANATION

We must free the memory allocated by the malloc and realloc .

However, we must not call free on the memory allocated by the calloc ,

since it is freed (if necessary) by realloc . Calling free after line 5 would

result in a double free.

Q4 A hop, skip, and a jump
5 Points

Consider the following code:

1 struct Node {

2 int val;

3 struct Node *next;

Add free(numbers); immediately after line 4

Add free(numbers); immediately after line 5

Add free(numbers); immediately after line 6

Add free(numbers); immediately after line 4 and line 5

Add free(numbers); immediately after line 4 and line 6

Add free(numbers); immediately after line 5 and line 6

4 };

5

6 struct List {

7 struct Node *first;

8 };

9

10 void List_insert(struct List *list, int new_val)

11 {

12 struct Node *new_node = malloc(sizeof(struct Node));

13 new_node->val = new_val;

14 new_node->next = list->first;

15 list->first = new_node;

16 }

17

18 void mystery(struct Node *node)

19 {

20 if (!node)

21 return;

22 printf("%d", node->val);

23 if (node->next)

24 mystery(node->next->next);

25 printf("%d", node->val);

26 }

27

28 int main()

29 {

30 struct List l = { NULL };

31 List_insert(&l, 1);

32 List_insert(&l, 2);

33 mystery(l.first);

34 List_insert(&l, 3);

35 mystery(l.first);

36 return 0;

37 }

Q4.1
1 Point

The implementation of List_insert runs in:

EXPLANATION

Because this implementation inserts onto the front of the list, it performs

just a couple of simple operations. There is no traversal of the list, so it

runs in constant time.

Q4.2
1 Point

The implementation of List_insert produces a list containing values in the

reverse of the order in which they were inserted:

EXPLANATION

Each call to List_insert inserts the value onto the front of the list. So,

the List ends up in reverse order.

Q4.3
1 Point

Without changing the definitions of struct Node and struct List , it is

possible to change List_insert such that it runs in constant time and

produces a list containing values in the same order in which they were

inserted:

Constant time

Linear time (i.e., proportional to the number of items in the list)

Quadratic time

True

False

True

False

EXPLANATION

Producing a list in front-to-back order would require List_insert to

insert Node s onto the back of the list. This requires traversing the list,

and is inherently linear-time.

Q4.4
1 Point

What is printed by the call to mystery on line 33?

(Write only the digits printed, with no extra white space, punctuation, or text.

If the code crashes or enters an infinite loop, write "crash".)

22

EXPLANATION

Before the first call to mystery , the list contains 2 and 1, in that order.

The call to mystery prints 2, does a recursive call on NULL (which

immediately returns), and prints 2 again.

Q4.5
1 Point

What is printed by the call to mystery on line 35?

(Write only the digits printed, with no extra white space, punctuation, or text.

If the code crashes or enters an infinite loop, write "crash".)

3113

EXPLANATION

Before this call to mystery , the list contains 3, 2 and 1, in that order. The

call to mystery prints 3, and does a recursive call on the Node containing

the 1. The recursive call prints 1, skips doing another recursive call (since

node->next is NULL), and prints 1 again. Finally, the original call to mystery

prints 3 again.

Q5 Big cat
6 Points

For this problem, you will be using some <string.h> functions, which have

the following signatures:

char *strcat(char *dest, const char *src);

char *strcpy(char *dest, const char *src);

int strcmp(const char *s1, const char *s2);

size_t strlen(const char *s);

char *strstr(const char *haystack, const char *needle);

Consider writing a function that concatenates two source strings, in order,

onto a destination string. We shall call it strtiger (because it is bigger than

just strcat (groan)).

Here is one implementation, to show the desired behavior in code:

char *strtiger1(char *dest, const char *src1, const char *src2)

{

return strcat(strcat(dest, src1), src2);

}

Q5.1
1 Point

Now you want to write a version of strtiger that doesn't rely on strcat . Fill

in the blanks with the appropriate expressions.

char *strtiger2(char *dest, const char *src1, const char *src2)

{

char *p = /* __blank 1__ */;

while (*p != '\0')

 p++;

/* __blank 2__ */(p, src1);

 p += /* __blank 3__ */;

strcpy(p, src2);

return dest;

}

What should go in __blank 1__ ?

EXPLANATION

We want to traverse to the end of the string that's currently in dest .

Looking at the while loop, we realize that we're going to be

incrementing p to walk through the string, and dereferencing p to

determine whether we're at the end. So, we initialize p to dest itself,

and not *dest or &dest .

Q5.2
1 Point

What should go in __blank 2__ ?

src1

dest

*src1

*dest

&src1

&dest

EXPLANATION

strcat would have worked here, but of course we said that want to

avoid that in strtiger2 . After the while loop, p points at the '\0'

character at the end of the old dest string, so this is the perfect location

at which to copy str1 .

Q5.3
1 Point

What should go in __blank 3__ ?

EXPLANATION

We now wish to skip over the string we've just copied, and set ourselves

up to copy src2 at the new location of p . We want to move p forward

by exactly strlen(src1) characters, since that will leave it pointing to the

'\0' character at the end of the str1 copy.

Q5.4
3 Points

strcpy

strcmp

strlen

strstr

strlen(src1) - 1

strlen(src1)

strlen(src1) + 1

strlen(src2) - 1

strlen(src2)

strlen(src2) + 1

We now have a skeleton of a third version of strtiger :

char *strtiger3(char *dest, const char *src1, const char *src2)

{

char *p = dest;

/* Insert code here */

return dest;

}

but the lines that go in the middle have gotten scrambled:

1 while (*p++ = *src1++) ;

2 while (*p++ = *src2++) ;

3 while (*p)

4 p--;

5 p++;

Write the correct permutation of these 5 lines that would make the code

work.

(Write only the 5 numbers representing the order of lines — e.g., 12345 or

54321 — with no extra white space, punctuation, or text.)

35142

EXPLANATION

We recognize lines 1 and 2 as loops that copy src1 and src2 ,

respectively, starting at the location of p . Note that these while loops

have empty bodies — there is nothing between the conditions of the

while and semicolons. Also note that they both copy the '\0' character

at the end of the string, just as strcpy does — this will be important later

on. So, we know that we will need to have line 1 and line 2 in that order,

with some extra code to set up p correctly for the two copies. The first

copy needs to have p pointing to the '\0' character at the end of dest ,

just as in strtiger2 . Accomplishing that requires lines 3 and 5. (Note

that the while on line 3 does not have an empty body on the same line,

unlike the ones in lines 1 and 2. So, line 3 must be followed by either 4

or 5 to have a loop that makes sense.) Then, once the loop in line 1 is

complete, p is pointing one character past the '\0' that just got copied

(because of the postincrement). So, we need line 4 to move p back one

character to set up for the loop in line 2.

Q6 Perplexing pointers and silly strings
6 Points

Consider the following code:

char princeton[] = "Tigers!";

const char *cos = "217!";

char *exam[9];

 *exam = malloc(9);

strcpy(*exam, "Midterm!");

 *(exam + 1) = (*exam) + 1;

Assuming that all appropriate header files have been included, and that the

call to malloc succeeds, answer the following questions. Hint: definitely

grab a sheet of scratch paper and draw out the variables and pointers!

Also, read the definition of exam carefully!

Q6.1

1 Point

What section of memory contains the characters 217! ?

EXPLANATION

The string "217!" is allocated in rodata, with cos pointing to it.

Q6.2
1 Point

What section of memory contains the characters Midterm! ?

EXPLANATION

Initially, there is one copy of "Midterm!" located in rodata. A pointer to

its first character is passed to strcpy , and afterwards the string

"Midterm!" is also present in the memory allocated by malloc — i.e., on

the heap.

Q6.3
1 Point

heap

rodata

stack

text

more than one of these

heap

rodata

stack

text

more than one of these

For each of the following expressions, indicate whether it results in a

compiler error or warning, or what it evaluates to otherwise. Hint: the

compiler will warn about comparisons between different pointer types.

princeton[6] == cos[3]

EXPLANATION

Character 6 (counting from 0, of course) of princeton is '!' , as is

character 3 of cos .

Q6.4
1 Point

exam[7] == cos[3]

EXPLANATION

This is the tricky one. It requires you to understand that exam is declared

as an array of char * , and not just an array of char . So, exam[7] isn't a

character — it's a pointer, unlike cos[3] . Trying to compare a pointer to

a char will result in a compiler warning.

Q6.5
1 Point

*(exam + 1) == (princeton + 1)

Results in a compiler error or warning

Evaluates to 0 (FALSE)

Evaluates to 1 (TRUE)

Results in a compiler error or warning

Evaluates to 0 (FALSE)

Evaluates to 1 (TRUE)

EXPLANATION

Unlike the previous question, this at least is a valid comparison between

two pointers-to- char . The first one was set by the last line in the given

code to point at the 'i' in the string "Midterm!" that was copied into

*exam . The second one is a pointer to the 'i' in "Tigers!" . Even

though both pointers point to an 'i' , they are nonetheless different

pointers and contain different memory locations.

Q6.6
1 Point

**(exam + 1) == *(princeton + 1)

EXPLANATION

We now dereference both pointers described in the previous answer,

and are comparing two char s, each equal to 'i' .

Q7 !sgub eht dniF
5 Points

The following functions are each intended to print a C string backwards.

They all use the putchar standard library function to print characters to

stdout — it has the following signature:

Results in a compiler error or warning

Evaluates to 0 (FALSE)

Evaluates to 1 (TRUE)

Results in a compiler error or warning

Evaluates to 0 (FALSE)

Evaluates to 1 (TRUE)

int putchar(int c);

Assume that pc is not NULL , and points to a correctly null-terminated

string whose length fits into an int . For each function, indicate whether it

succeeds, or how it fails.

Q7.1
1 Point

void fun1(const char *pc)

{

int i;

for (i = strlen(pc) - 1; i >= 0; i--)

putchar(pc[i]);

}

EXPLANATION

The loop correctly sets i equal to indices ranging from the last

character in the string to the first. Although we've pointed out in class

the perils of having strlen in the condition of a for loop, where it gets

called each time through the loop, having strlen in the initialization of

the loop (i.e., before the first semicolon) means it gets executed only

once. So, the code is not particularly inefficient.

Q7.2

Results in a compiler error.

Compiles and runs, but accesses memory it shouldn't and may crash at

run-time.

Runs and terminates, but produces incorrect output.

Produces correct output, but is grossly inefficient (by more than a

constant factor).

Runs correctly and efficiently (within a constant factor of optimal).

1 Point

void fun2(const char *pc)

{

int i;

int n = strlen(pc);

for (i = n; i >= 0; i--)

putchar(pc[i]);

}

EXPLANATION

Prints out a spurious '\0' character the first time through the loop.

Q7.3
1 Point

void fun3(const char *pc)

{

int i;

int n = strlen(pc - 1);

for (i = n; i > 0; i--)

putchar(pc[i]);

}

Results in a compiler error.

Compiles and runs, but accesses memory it shouldn't and may crash at

run-time.

Runs and terminates, but produces incorrect output.

Produces correct output, but is grossly inefficient (by more than a

constant factor).

Runs correctly and efficiently (within a constant factor of optimal).

EXPLANATION

Calls strlen on a pointer pointing to a memory location before the start

of the string at pc . This not only gives the wrong value of n , but, more

seriously, may cause strlen to read memory that it wasn't entitled to

read. Although in practice the program most likely won't crash, the rules

of C say that this is an illegal memory access that may result in a crash.

Q7.4
1 Point

void fun5(const char *pc)

{

int i;

int n = strlen(pc) - 1;

for (i = n; i >= 0; i--)

putchar((*pc) + i);

}

Results in a compiler error.

Compiles and runs, but accesses memory it shouldn't and may crash at

run-time.

Runs and terminates, but produces incorrect output.

Produces correct output, but is grossly inefficient (by more than a

constant factor).

Runs correctly and efficiently (within a constant factor of optimal).

EXPLANATION

The expression (*pc) is the first character in the string. The increment

by i then increments the numeric value of the character, not the

pointer. To be correct, this would have to read putchar(*(pc + i));

Q7.5
1 Point

void fun6(const char *pc)

{

int i;

for (i = 0; i < strlen(pc); i++)

putchar(pc[strlen(pc) - i - 1]);

}

Results in a compiler error.

Compiles and runs, but accesses memory it shouldn't and may crash at

run-time.

Runs and terminates, but produces incorrect output.

Produces correct output, but is grossly inefficient (by more than a

constant factor).

Runs correctly and efficiently (within a constant factor of optimal).

Results in a compiler error.

Compiles and runs, but accesses memory it shouldn't and may crash at

run-time.

Runs and terminates, but produces incorrect output.

Produces correct output, but is grossly inefficient (by more than a

constant factor).

Runs correctly and efficiently (within a constant factor of optimal).

EXPLANATION

This produces correct output, but calls strlen twice per iteration of the

loop. This has turned a linear-time algorithm into a quadratic-time one.

