
Lecture 23: Artificial intelligence, machine learning, 
natural language processing, ...

• buzzwords, hype, real accomplishments, wishful thinking
– big data, deep learning, neural networks, chatbots, ...

• brief history
• examples

– games (chess, Go)
– classification (spam detection)
– prediction (future prices)
– recommendation systems (Netflix, Amazon, Goodreads, ...)
– natural language processing (sentiment analysis, translation, generation)
– large language models

• issues and concerns
– accuracy
– fairness, bias, accountability, explainability
– appropriate uses

• Beware:  on this topic, I am even less of an expert than normal.



Revisionist history of AI (non-expert perspective)

• 1950s, 1960s:  naive optimism about artificial intelligence
– checkers, chess, machine translation, theorem proving, speech recognition, 

image recognition, vision, ...
– almost everything proved to be much harder than was thought

• 1980s, 1990s:  expert or rule-based systems
– domain experts create rules, computers apply them to make decisions
– it's too hard to collect the rules, and there are too many exceptions
– doesn't scale to large datasets or new problem domains

• 2010s:  machine learning, big data, deep learning, ...
– provide a "training set" with lots of examples correctly characterized
– define "features" that might be relevant, or let the program find them itself
– write a program that "learns" from its successes and failures on the training 

data (basically by figuring out how to combine feature values)
• 2020s:  large language models

– ChatGPT, Claude, ...
– near-human performance on many text understanding and generation tasks

including images, speech  (multi-modal)



Examples of ML applications  (a small subset)

• games
– checkers, chess, Go

• classification
– spam detection, digit recognition, optical character recognition, authorship, ...
– image recognition, face recognition, ...

• prediction
– house prices, stock prices, credit scoring, resume screening, ...
– tumor probabilities, intensive care outcomes, protein structure, ...

• recommendation systems
– e.g., Netflix, Amazon, Goodreads, ...

• natural language processing (NLP)
– language translation
– text to speech; speech to text
– sentiment analysis
– text generation  (ChatGPT et al)
– image generation  (Dall-E, Stable Diffusion, Midjourney, etc)



Types of learning algorithms

• supervised learning  (labeled data)
– teach the computer how to do something with training examples 
– then let it use its new-found knowledge to do it on new examples

• unsupervised learning  (unlabeled data)
– let the computer learn how to do something without training data
– use this to find structure and patterns in data

• reinforcement learning
– some kind of "real world" system to interact with
– feedback on success or failure guides / teaches future behavior

• recommender systems
– look for similarities in likes and dislikes / behaviors / ...
– use that to predict future likes / behaviors



Classification example: spam detection

• rule-based machine learning:  choose a set of features like 
– odd spelling, weird characters, language and grammar, origin, length, ...

• provide a training set of messages marked as "spam" or "not 
spam"

• ML algorithm figures out parameter settings that let it do the 
best job of separating spam from not spam in the training set

• then apply that to real data

• potential problems:
– training set isn't good enough or big enough
– creating it is may have to be done manually
– "over-fitting": does a great job on training set but not on real data
– spammers keep adapting so we always need new training material



Prediction example: house prices

• only one feature here: square footage
• straight line?  ("linear regression")
• some kind of curve?



Clustering:  learning from unlabeled data

• contrast with supervised learning
– supervised learning:

given a set of labels, fit a hypothesis to it
– unsupervised learning:

try and determine structure in the data
clustering algorithm groups data together based on data features

• clustering is good for
– market segmentation – group customers into different market segments
– social network analysis – identify friend groups
– topic analysis
– authorship



Neural networks, deep learning

• simulate human brain structure
with artificial neurons
in simple connection patterns



Large Language Models  (LLM)
• language models based on very large text corpus

– use deep learning to learn how language is used
– use that to generate text that seems human-written
– and give the (strong) impression of understanding

• models are proprietary (mostly)
– e.g., GPT-3, -4 licensed by Microsoft from OpenAI
– in part because they cost a *lot* to create, plus competitive value

• GPT = Generative Pre-trained Transformer
– transformer is a particular architecture for training

• ChatGPT is based on GPT-3, -4   (chat.openai.com)
– tuned for conversational style
– can remember previous parts of a conversation
– very new:  became available Nov 30, 2022
– has already revolutionized the field and public perception of AI



How LLMs work (layman's view)
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Training a language model  (layman's view)

• read an enormous amount of text (trillions of words)
• learn how words fit together, what phrases make sense,

what information is likely true (because it appears often?)

• training comes from massive amounts of text (no labeling)
– e.g., wikipedia, gutenberg, newspapers, programs, ...
– in any language
– GPT-3 training corpus approximately 500 billion words

• this creates billions of parameters (numbers) that enable 
prediction of next word given a sequence of words

• doesn't really "understand" but is very good at figuring out 
context well enough that its predictions make sense 



Training and using a model  

• train model on say 1 trillion words from Internet, etc.
• language model is a very deep and wide neural net

– e.g., 10,000 wide, 100 deep, lots of internal connections
– 100 billion or more parameters

• training: give it some text, ask it to predict the next word
• if it's wrong, adjust model parameters so it will do better
• repeat for several months of computation

• in use, give it a prompt, ask it to predict next word
• it generates a list of potential next words with probabilities
• pick one of the more likely continuations, randomly
• print it
• feed the result back into the input
• repeat



Hardware

• logical/functional/architectural structure
– bus connects processor, primary memory, disks, other devices
– caching
– CPU cycle: fetch-decode-execute; kinds of instructions

• toy machine as an example
• different processor families are incompatible at the instruction level

– von Neumann: architecture;  Turing: equivalence of all machines
• physical implementation; sizes and capacities

– chips; Moore's law, exponential growth

• analog vs digital

• representation of information
– bits, bytes, numbers, characters, instructions
– powers of 2;  binary and hexadecimal numbers
– interpretation determined by context

• it's all bits at the bottom



Software

• algorithms: sequence of defined steps that eventually stops
– complexity: how number of steps is related to amount of data

linear: searching, counting, …
quadratic: simple sorting
logarithmic: binary search  (logarithm = number of bits needed to store)
n log n: quicksort
exponential:  towers of Hanoi, traveling salesman problem, …

• programs and programming languages: 
– evolution, language levels: machine, assembly, higher-level
– translation/compilation; interpretation
– a program can simulate a machine or another program

• basic programming, enough to figure out what some code is doing
– variables, constants, expressions, statements, loops & branches (if-else, 

while), functions, libraries, components
• operating systems: run programs, manage file system & 

devices
– file systems: logical: directories and files; physical: disk blocks

• application programs, interfaces to operating system, APIs



Communications, etc.

• local area networks, Ethernet, wireless, broadcast media
• Internet: IP addresses, names & DNS, routing; packets

– bandwidth
• protocols: IP, TCP, higher-level; layering

– synthesis of reliable services out of unreliable ones

• Web: URLs, HTTP, HTML, browser
– caching

• security & privacy: viruses, cookies, spyware, …
– active content: Javascript, plugins, addons

• cryptography 
– secret key;  public key;  digital signatures;  secure hashes

• compression; error detection & correction

• wireless, cell phones, GPS, …

• AI/ML



Real world issues

• legal 
– intellectual property: trademarks, patents, copyrights, licenses
– jurisdiction, especially international

• social 
– privacy, security

• economic 
– open source vs proprietary
– who owns what

• political
– policy issues
– balancing individual, commercial and societal rights and concerns



Things to take away

• some skills, some specific technical knowledge
– how computers and communications work today
– what's ephemeral, what's likely to still be true in the future

• improved numeracy / quantitative reasoning
– what makes sense, what can't possibly make sense, and why

plausible estimates, engineering judgment, enlightened skepticism
• another way of thinking

– how do things work?
– how might something work?
– you can often figure it out

• some appreciation of tradeoffs & alternatives
– you never get something for nothing

• some historical perspective
– everything derives from what came before

• informed opinions about the role of technology



Final exam   (watch the web page for updates)

• Exam will be emailed to you early on Saturday Dec 14
– must be returned by Thu Dec 19,  5 PM EST  in person / email / pony express

• similar to midterm but twice as long
• open book, as with midterm:

open notes, book, problem sets, labs, old exams,  …, but no Internet
• see instructions on web site

• I'm usually looking for something brief that shows that you 
understand or can reason

• if you're writing or calculating a lot, you're likely on the wrong track
• questions try to test your understanding of basic ideas

– meant to be simple and straightforward, if you understand
– not meant to be tricky or rely on obscure facts

• think about plausibility and where I'm likely coming from
• if it still seems ambiguous, say "I'm assuming this..." and carry on


