
Lecture 23: Artificial intelligence, machine learning,
natural language processing, ...

• buzzwords, hype, real accomplishments, wishful thinking
– big data, deep learning, neural networks, chatbots, ...

• brief history
• examples

– games (chess, Go)
– classification (spam detection)
– prediction (future prices)
– recommendation systems (Netflix, Amazon, Goodreads, ...)
– natural language processing (sentiment analysis, translation, generation)
– large language models

• issues and concerns
– accuracy
– fairness, bias, accountability, explainability
– appropriate uses

• Beware: on this topic, I am even less of an expert than normal.

Revisionist history of AI (non-expert perspective)

• 1950s, 1960s: naive optimism about artificial intelligence
– checkers, chess, machine translation, theorem proving, speech recognition,

image recognition, vision, ...
– almost everything proved to be much harder than was thought

• 1980s, 1990s: expert or rule-based systems
– domain experts create rules, computers apply them to make decisions
– it's too hard to collect the rules, and there are too many exceptions
– doesn't scale to large datasets or new problem domains

• 2010s: machine learning, big data, deep learning, ...
– provide a "training set" with lots of examples correctly characterized
– define "features" that might be relevant, or let the program find them itself
– write a program that "learns" from its successes and failures on the training

data (basically by figuring out how to combine feature values)
• 2020s: large language models

– ChatGPT, Claude, ...
– near-human performance on many text understanding and generation tasks

including images, speech (multi-modal)

Examples of ML applications (a small subset)

• games
– checkers, chess, Go

• classification
– spam detection, digit recognition, optical character recognition, authorship, ...
– image recognition, face recognition, ...

• prediction
– house prices, stock prices, credit scoring, resume screening, ...
– tumor probabilities, intensive care outcomes, protein structure, ...

• recommendation systems
– e.g., Netflix, Amazon, Goodreads, ...

• natural language processing (NLP)
– language translation
– text to speech; speech to text
– sentiment analysis
– text generation (ChatGPT et al)
– image generation (Dall-E, Stable Diffusion, Midjourney, etc)

Types of learning algorithms

• supervised learning (labeled data)
– teach the computer how to do something with training examples
– then let it use its new-found knowledge to do it on new examples

• unsupervised learning (unlabeled data)
– let the computer learn how to do something without training data
– use this to find structure and patterns in data

• reinforcement learning
– some kind of "real world" system to interact with
– feedback on success or failure guides / teaches future behavior

• recommender systems
– look for similarities in likes and dislikes / behaviors / ...
– use that to predict future likes / behaviors

Classification example: spam detection

• rule-based machine learning: choose a set of features like
– odd spelling, weird characters, language and grammar, origin, length, ...

• provide a training set of messages marked as "spam" or "not
spam"

• ML algorithm figures out parameter settings that let it do the
best job of separating spam from not spam in the training set

• then apply that to real data

• potential problems:
– training set isn't good enough or big enough
– creating it is may have to be done manually
– "over-fitting": does a great job on training set but not on real data
– spammers keep adapting so we always need new training material

Prediction example: house prices

• only one feature here: square footage
• straight line? ("linear regression")
• some kind of curve?

Clustering: learning from unlabeled data

• contrast with supervised learning
– supervised learning:

given a set of labels, fit a hypothesis to it
– unsupervised learning:

try and determine structure in the data
clustering algorithm groups data together based on data features

• clustering is good for
– market segmentation – group customers into different market segments
– social network analysis – identify friend groups
– topic analysis
– authorship

Neural networks, deep learning

• simulate human brain structure
with artificial neurons
in simple connection patterns

Large Language Models (LLM)
• language models based on very large text corpus

– use deep learning to learn how language is used
– use that to generate text that seems human-written
– and give the (strong) impression of understanding

• models are proprietary (mostly)
– e.g., GPT-3, -4 licensed by Microsoft from OpenAI
– in part because they cost a *lot* to create, plus competitive value

• GPT = Generative Pre-trained Transformer
– transformer is a particular architecture for training

• ChatGPT is based on GPT-3, -4 (chat.openai.com)
– tuned for conversational style
– can remember previous parts of a conversation
– very new: became available Nov 30, 2022
– has already revolutionized the field and public perception of AI

How LLMs work (layman's view)

generate likely
next word

language model

prompt list of potential
next words

(with probabilities)

pick one,
append it to

previous input

and print it

Training a language model (layman's view)

• read an enormous amount of text (trillions of words)
• learn how words fit together, what phrases make sense,

what information is likely true (because it appears often?)

• training comes from massive amounts of text (no labeling)
– e.g., wikipedia, gutenberg, newspapers, programs, ...
– in any language
– GPT-3 training corpus approximately 500 billion words

• this creates billions of parameters (numbers) that enable
prediction of next word given a sequence of words

• doesn't really "understand" but is very good at figuring out
context well enough that its predictions make sense

Training and using a model

• train model on say 1 trillion words from Internet, etc.
• language model is a very deep and wide neural net

– e.g., 10,000 wide, 100 deep, lots of internal connections
– 100 billion or more parameters

• training: give it some text, ask it to predict the next word
• if it's wrong, adjust model parameters so it will do better
• repeat for several months of computation

• in use, give it a prompt, ask it to predict next word
• it generates a list of potential next words with probabilities
• pick one of the more likely continuations, randomly
• print it
• feed the result back into the input
• repeat

Hardware

• logical/functional/architectural structure
– bus connects processor, primary memory, disks, other devices
– caching
– CPU cycle: fetch-decode-execute; kinds of instructions

• toy machine as an example
• different processor families are incompatible at the instruction level

– von Neumann: architecture; Turing: equivalence of all machines
• physical implementation; sizes and capacities

– chips; Moore's law, exponential growth

• analog vs digital

• representation of information
– bits, bytes, numbers, characters, instructions
– powers of 2; binary and hexadecimal numbers
– interpretation determined by context

• it's all bits at the bottom

Software

• algorithms: sequence of defined steps that eventually stops
– complexity: how number of steps is related to amount of data

linear: searching, counting, …
quadratic: simple sorting
logarithmic: binary search (logarithm = number of bits needed to store)
n log n: quicksort
exponential: towers of Hanoi, traveling salesman problem, …

• programs and programming languages:
– evolution, language levels: machine, assembly, higher-level
– translation/compilation; interpretation
– a program can simulate a machine or another program

• basic programming, enough to figure out what some code is doing
– variables, constants, expressions, statements, loops & branches (if-else,

while), functions, libraries, components
• operating systems: run programs, manage file system &

devices
– file systems: logical: directories and files; physical: disk blocks

• application programs, interfaces to operating system, APIs

Communications, etc.

• local area networks, Ethernet, wireless, broadcast media
• Internet: IP addresses, names & DNS, routing; packets

– bandwidth
• protocols: IP, TCP, higher-level; layering

– synthesis of reliable services out of unreliable ones

• Web: URLs, HTTP, HTML, browser
– caching

• security & privacy: viruses, cookies, spyware, …
– active content: Javascript, plugins, addons

• cryptography
– secret key; public key; digital signatures; secure hashes

• compression; error detection & correction

• wireless, cell phones, GPS, …

• AI/ML

Real world issues

• legal
– intellectual property: trademarks, patents, copyrights, licenses
– jurisdiction, especially international

• social
– privacy, security

• economic
– open source vs proprietary
– who owns what

• political
– policy issues
– balancing individual, commercial and societal rights and concerns

Things to take away

• some skills, some specific technical knowledge
– how computers and communications work today
– what's ephemeral, what's likely to still be true in the future

• improved numeracy / quantitative reasoning
– what makes sense, what can't possibly make sense, and why

plausible estimates, engineering judgment, enlightened skepticism
• another way of thinking

– how do things work?
– how might something work?
– you can often figure it out

• some appreciation of tradeoffs & alternatives
– you never get something for nothing

• some historical perspective
– everything derives from what came before

• informed opinions about the role of technology

Final exam (watch the web page for updates)

• Exam will be emailed to you early on Saturday Dec 14
– must be returned by Thu Dec 19, 5 PM EST in person / email / pony express

• similar to midterm but twice as long
• open book, as with midterm:

open notes, book, problem sets, labs, old exams, …, but no Internet
• see instructions on web site

• I'm usually looking for something brief that shows that you
understand or can reason

• if you're writing or calculating a lot, you're likely on the wrong track
• questions try to test your understanding of basic ideas

– meant to be simple and straightforward, if you understand
– not meant to be tricky or rely on obscure facts

• think about plausibility and where I'm likely coming from
• if it still seems ambiguous, say "I'm assuming this..." and carry on

