
Lecture 21: Compression; Error detection and correction

• compression: squeeze out redundancy
– to use less memory and/or use less network bandwidth,
– encode the same information in fewer bits

• some bits carry no information
• some bits can be computed or inferred from others
• some bits don't matter to the recipient and can be dropped entirely

• error detection & correction: add redundancy
– to detect and fix up loss or damage
– add carefully defined, systematic redundancy
– with enough of the right redundancy,

can detect damaged bits
can correct errors

Compressing English text

• letters do not occur equally often
• encode frequent letters with fewer bits,
• encode less frequent letters with more bits
• trades complexity against space

– e.g., Morse code, Huffman code, ...

• run-length encoding
– encode runs of identical things with a count
– e.g., World Wide Web Consortium => WWWC => W3C

• words do not occur equally often
• encode whole words or phrases, not just letters

– e.g., abbreviations for frequent words or sequences
– acronyms, shorthands, ...

Letter frequencies in King James bible (4.1M chars)

SP

E

T
H A

O
N

I S
R D

L

F U M W Y G C B P V K J Z X Q
0

100000

200000

300000

400000

500000

600000

700000

800000

SP E T H A O N I S R D L F U M W Y G C B P V K J Z X Q

Lempel-Ziv coding; adaptive compression algorithms

• build a dictionary of recently occurring data
• replace subsequent occurrences by (shorter) reference to the

dictionary entry
• dictionary adapts as more input is seen

– compression adapts to properties of particular input
– algorithm is independent of nature of input

• dictionary is included in the compressed data

• Lempel-Ziv is the basis of PKZip, Winzip, gzip, GIF
– compresses Bible from 4.1 MB to 1.2 MB (typical for English text)

• Lempel-Ziv is a lossless compression scheme
– compression followed by decompression reproduces the input exactly

• lossy compression: may do better if can discard some
information

– commonly used for pictures, sounds, movies

JPEG (Joint Photographic Experts Group) picture compression

• a lossy compression scheme, based on how our eyes work
• digitize picture into pixels
• discard some color information (use fewer distinct colors)

– eye is less sensitive to color variation than to brightness
• discard some fine detail

– decompressed image is not quite as sharp as original

• use Huffman code, run-length encoding, etc., to compress
resulting stream of numeric values

• compression is usually 10:1 to 20:1 for pictures
• used in web pages, digital cameras, ...

PNG (Portable Network Graphics) compression

• PNG is lossless
• PNG was always an open algorithm – no patent issues

• PNG versus JPG?
– JPG is "designed for photographic image data, which is typically

dominated by soft, low-contrast transitions, and an amount of noise or
similar irregular structures."

– "Using PNG instead of a high-quality JPEG for such images would result
in a large increase in filesize with negligible gain in quality."

– "In comparison, when storing images that contain text, line art, or
graphics – images with sharp transitions and large areas of solid color –
the PNG format can compress image data more than JPEG can.
Additionally, PNG is lossless, while JPEG produces visual artifacts
around high-contrast areas."

• "Where an image contains both sharp transitions and
photographic parts, a choice must be made between the two
effects."

MPEG (Moving Picture Experts Group) movie compression

• MPEG-4: lossy compression scheme, based on human perceptions

• uses JPEG for individual frames (spatial redundancy)

• adds compression of temporal redundancy
– look at image in blocks
– if a block hasn't changed, just transmit that fact, not the content
– if a block has moved, transmit amount of motion
– motion prediction (encode expected differences plus correction)
– separate moving parts from static background
– ...

• used in phones, DVD, TV, Internet video, video games, ...
• rate depends on resolution, frame rate, ...

MP3 (MPEG Audio Layer-3) sound compression

• movies have sound as well as motion; this is the audio part
• 3 levels, with increasing compression, increasing complexity
• based on "perceptual noise shaping":

use characteristics of the human ear to compress better:
– human ear can't hear some sounds (e.g., very high frequencies)
– human ear hears some sounds better than others
– louder sounds mask softer sounds

• break sound into different frequency bands
• encode each band separately
• encode 2 stereo channels as 1 plus difference

• gives about 10:1 compression over CD-quality audio
– 1 MB/minute instead of 10 MB/minute
– can trade quality against compression

Summary of compression

• eliminate / reduce redundancy
– more frequent things encoded with fewer bits
– use a dictionary of encoded things, and refer to it (Lempel-Ziv)
– encode repetitions with a count

• not everything can be compressed
– something will be bigger

• lossless vs lossy compression
– lossy discards something that is not needed by recipient

• tradeoffs
– encoding time and complexity vs decoding time and complexity
– encoding is usually slower and more complicated (done once)
– parameters in lossy compressions

size, speed, quality

Error detection and correction

• systematic use of redundancy to defend against errors

• some common numbers have no redundancy
– and thus can't detect when an error might have occurred
– e.g., SSN -- any 9-digit number is potentially valid

• if some extra data is added or if some possible values are
excluded, this can be used to detect and even correct errors

• common examples include
– ATM & credit card numbers
– ISBN for books
– bar codes for products, mail, ...

ATM card checksum

• credit card / ATM card checksum:
starting at rightmost digit:

multiply digit alternately by 1 or 2
if result is > 9 subtract 9

add the resulting digits
sum should be divisible by 10

e.g., 12345678 is invalid
8 + (14-9) + 6 + (10-9) + 4 + 6 + 2 + 2 = 34

but 42345678 is valid
8 + (14-9) + 6 + (10-9) + 4 + 6 + 2 + 8 = 40

• defends against transpositions and many single digit errors
– these are the most common errors

Parity & other binary codes

• parity bit: use one extra bit so total number of 1-bits is even
0110100 => 01101001
0110101 => 01101010

– detects any single-bit error

• more elaborate codes can detect and even correct errors

• basic idea is to add extra bits systematically so that legal values
are uniformly spread out, so any small error converts a legal value
into an illegal one
– some schemes correct random isolated errors
– some schemes correct bursts of errors (used in CD-ROM and DVD)

• no error correcting code can detect/correct all errors
– a big enough error can convert one legal pattern into another one

