
Lecture 12: Python programming

• a (formerly) simple language that scales well
to large(ish) programs

• originally designed & implemented in 1990
by Guido van Rossum at CWI in Amsterdam

• very widely used
– standard language for many intro courses (though not CS here)
– standard language for data science
– arguably the best choice for a first language

• use version 3, not version 2

Programming language components

• syntax: grammar rules for defining legal statements
– what's grammatically legal? how are things built up from smaller things?

• semantics: what things mean
– what do they compute?

• statements: instructions that say what to do
– compute values, make decisions, repeat sequences of operations

• variables: places to hold data in memory while program is running
– numbers, text, ...

• most languages are higher-level and more expressive than the
assembly language for the toy machine
– statements are much richer, more varied, more expressive
– variables are much richer, more varied
– grammar rules are more complicated
– semantics are more complicated

• but it's basically the same idea

Python components
• Python language

– statements that tell the computer what to do
get user input, display output, set values, do arithmetic,
test conditions, repeat groups of statements, …

• built-in functions, libraries
– pre-fabricated pieces that you don't have to create yourself

print, input, math functions, text manipulation, ...
• access to the environment

– file system, network, ...

• you are not expected to remember syntax or other details
you can look them up as needed

• you are not expected to write code in exams
though you will have to write some code in problem sets and labs

• you are expected to understand the ideas
– how programming and programs work
– figure out what a tiny program does or why it's broken

Example 0: Hello world (hello.py)

• this is the basic example for most programming
languages

print("Hello, world")

• how you can run it:

– commandline interactive
– commandline from a file
– browser with local files
– on the web with Colab or other cloud service

Example 1: echo a name (name.py)

• read some input, print it back

name = input("What's your name? ")
print("hello,", name)

Example 2: join 2 names (name2.py)

• variables, joining strings of characters together

firstname = input("Enter first name: ")
lastname = input("Enter last name: ")
result = firstname + lastname
print("hello,", result)

Example 3: add 2 numbers (add2.py)

• user input, variables, arithmetic, type conversion

num1 = input('Enter first number: ')
num2 = input('Enter second number: ')
sum = int(num1) + int(num2)
print('Sum =', sum)

int(...) converts a sequence of characters into its integer value

float(...) converts a sequence of characters into its
floating point value

Example 4: add up lots of numbers (addup.py)

• variables, operators, expressions, assignment statements
• while loop, relational operator (!= means "not equal to")

sum = 0
num = input("Enter new value, or empty to end: ")
while num != "":

sum = sum + float(num)
num = input("Enter new value, or empty to end: ")

print(sum)

Example 5: find the largest number (max.py)

• needs an if to test whether new number is bigger
• needs another relational operator
• needs int() or float() to treat input as a number

max = 0

num = input("Enter new value, or empty to end: ")
while num != "":

num = float(num)
if num > max:

max = num
num = input("Enter new value, or empty to end: ")

print(max)

Variables, constants, expressions, operators

• a variable is a place in memory that holds a value
– has a name that the programmer gave it, like sum or Area or n
– in Python, can hold any of multiple types, most often

numbers like 1 or 3.14, or
sequences (strings) of characters like "Hello" or "Enter new value"

– always has a value
– has to be set to some value initially before it can be used
– its value will generally change as the program runs
– ultimately corresponds to a location in memory
– but it's easier to think of it just as a name for information

• a constant is an unchanging literal value like 3.14 or "hello"
• an expression uses operators, variables and constants

to compute a value
3.14 * rad * rad

• operators include + - * / %

Example 6: compute area of a circle (area.py)

import math

r = input("Enter radius: ")
while r != "":
area = math.pi * float(r) ** 2
print("radius =", r, ", area =", area)
r = input("Enter radius: ")

• how do we terminate the loop?
– 0 is a valid data value
– input() returns "" for empty input so use that

• exponentiation operator is **

• note use of the math library

Types, declarations, conversions
• each variable holds information of a specific type

– really means that bits are to be interpreted as info of that type
– internally, 3 and 3.00 and "3.00" are represented differently

• Python sometimes infers types from context and does conversions
automatically

• usually you have to be explicit:
int(...)

float(...)

str(...)

Making decisions and repeating statements

• if-else statement makes decisions
– the Python version of decisions written with ifzero, ifpos, ...

if condition is true:
do this group of statements

else:

do this group of statements instead

• while statement repeats groups of statements
– a Python version of loops written with ifzero, ifpos and goto

while condition is true:
do this group of statements

• INDENTATION MATTERS
– indicates what statements are within the if or while

Example 7: if-elif-else sequence (sign.py)

• can include else-if ("elif") sections for a series of decisions:

num = input("Enter number: ")
while num != "":
num = int(num)
if num > 0:
print(str(num) + " is positive")

elif num < 0:
print(str(num) + " is negative")

else:
print(str(num) + " is zero")

num = input("Enter number: ")

Example 8: while loops
• counting or "indexed" loop:

i = 1
while i <= 10:

do something (maybe using current value of i)
i = i + 1

• "nested" loops (while.py):

n = input("Enter number: ")
while n != "":

i = 0
while i <= int(n):

print(i, i * i)
i = i + 1

n = input("Enter number: ")

Example 9: for loop

for i in range(0, 500):
print("I will not throw paper airplanes in class.")

C version:

Functions

• a function is a group of statements that does some computation
– the statements are collected into one place and given a name
– other parts of the program can "call" the function

that is, use it as a part of whatever they are doing
– you can supply the function with values to use in its computation

("arguments" or "parameters")
– the function computes or "returns" a value that can be used in expressions

(the value need not be used)

• Python provides some useful built-in functions
– e.g., print, input, ...

• you can write your own functions

Example 10: functions

• syntax
def name (list of arguments):

the statements of the function

• example of a function definition:

def area(r):

return math.pi * r ** 2

• using ("calling") the function:
r = input("Enter radius ");

print("radius =", r, ", area =", area(r))

• calling it twice in one expression:
print("CD recording surface =", area(2.3) - area(0.8))

Example 11: area of a ring (ring.py)

import math

def area(r):
return math.pi * r ** 2

r1 = input("Enter radius 1: ")
while r1 != "":

r2 = input("Enter radius 2: ")
print("Area = ", area(float(r1)) - area(float(r2)))
r1 = input("Enter radius 1: ")

Why use functions?

• if a computation appears several times in one program
– a function collects it into one place

• breaks a big job into smaller, manageable pieces
– that are separate from each other
– multiple people can work on the program

• defines an interface
– implementation can be changed as long as it still does the same job

• a way to use code written by others long ago and far away
– most of Python's library of useful stuff is accessed through functions

• good libraries encourage use of the language
– a major reason for the success of Python

Data structures

• how to organize related data items in a program
– so they can be treated uniformly, e.g., in a loop

• usually means groups of related data items, e.g.,
– info about a particular student
– list of student names
– list of info about all students

• basic Python data structures
– object: a collection of one or more related variables

e.g., info about a particular student
– array: a sequence of items numbered from 0 to whatever

(confusingly, Python calls this a list)
indexed by number, like a[n]; elements are a[0] ... a[n-1]

– dictionary: a set of items indexed by name
weight["A+"]

Summary: elements of (most) programming languages

• constants: literal values like 1, 3.14, "Hello, world!"
• variables: places to store data and results during computing
• declarations: specify name (and type) of variables, etc.
• expressions: operations on variables and constants to produce new

values
• statements: assignment, conditional, loop, function call

– assignment: store a new value in a variable
– conditional: compare and branch; if-else
– loop: repeat statements while a condition is true

• data structures: ways to organize related data items
• functions: package a group of statements so they can be used

("called")
from other places in a program

• libraries: functions already written for you

How Python works

• recall the process for Fortran, C, etc.:
compiler => assembler => machine instructions

• Python is analogous, but differs significantly in details

• Python compiler
– checks for errors
– compiles the program into instructions for something like the toy machine,

but richer, more complicated, higher level
– runs a simulator program (like the toy) that interprets these instructions

• the simulator is often called an "interpreter" or a "virtual machine"
– probably written in C or C++ but could be written in anything

Real-world programming

• the same thing, but on a grand scale
– programs may be millions of lines of code

typical productivity: 1-10K lines/year/programmer
– thousands of people working on them
– lifetimes measured in years or even decades

• big programs need teams, management, coordination,
meetings, …
– schedules and deadlines
– constraints on how fast the program must run, how much memory it can

use
– external requirements for reliability, safety, security, legal compliance,

interoperability with other systems, …

• maintenance of old ("legacy") programs is hard
– programs must evolve to meet changing environments and requirements
– machines and tools and languages become obsolete
– expertise disappears

