
Lecture 9: Software systems

• operating systems
– runs programs, controls the computer, stores information, communicates

• applications ("apps")
– programs that do things

• cloud computing, virtual machines, ...
– where boundaries become even less clear

• intellectual property
– copyrights, patents, licenses

• interfaces, standards, antitrust, ...
– agreements on how to communicate and inter-operate

• open source software
– freely available, non-proprietary

• jurisdiction
– where are the computers? where is the data? who has access to it?

Software systems come in lots of sizes

• programs come in different sizes
– 10 - 20 lines (COS 109 psets and labs: tiny, like a response paragraph)

• programs in intro courses like COS 126
– 100 - 300 lines? (like a short paper?)

• projects in courses like COS 333
– 2000 - 5000 lines (like a substantial term paper or a thesis)

• significant applications
– 100,000 - 1,000,000 lines (like a book, maybe a very big book)

• operating systems, major applications
– 10,000,000 and up (like a multi-volume book?)

• a typical programmer produces at most a few thousand lines of
production code per year

Operating system

• a program that controls the resources of a computer
– interface between hardware and all other software
– examples: MS-DOS, Windows 3.0/95/98/NT/ME/2000/XP/Vista/7/8/10/11

macOS, iOS, Android, ...
Unix / Linux

• runs other programs ("applications", your programs, ...)
• manages information on disk (file system)
• controls peripheral devices, communicates with outside world
• keeps things from interfering with each other

• provides a level of abstraction above the raw hardware
– makes the hardware appear to provide high-level services
– makes programming much easier

What an operating system does

• manages CPUs, schedules and coordinates running programs
– switches CPU among programs that are actually computing
– suspends programs that are waiting for something (e.g., disk, network)
– keeps individual programs from hogging resources

• manages primary memory (RAM)
– loads (parts of) programs in memory so they can run
– swaps them to disk and back if there isn’t enough RAM (virtual memory)
– keeps separate programs from interfering with each other
– and with the operating system itself (protection)

• manages and coordinates input/output to devices
– disks, display, keyboard, mouse, network, ...
– keeps separate uses of shared devices from interfering with each other
– provides uniform interface to disparate devices

• manages files on secondary storage (file system)
– provides hierarchy of folders/directories and files for storing information

History of general-purpose operating systems
• 1950's: signup sheets

– full access to entire bare computer
• 1960's: batch operating systems

– operators running batches of jobs
– OS/360 (IBM)

• 1970's: time-sharing
– simultaneous access for multiple users
– Unix (Bell Labs; Ken Thompson & Dennis Ritchie)

• 1980's: personal computers, single user systems
– DOS, Windows, MacOS, Unix

• 1990's: personal computers, PDA's, …
– PalmOS, Windows CE, Unix / Linux

• 2000's: Windows, Unix/Linux, MacOSX (a Unix variant)
• 2010 and beyond: Apple vs. Google vs. Microsoft

– macOS, iOS, Android, ChromeOS, … (all Unix/Linux-based),
– cloud computing (Amazon)

• not all computers have general-purpose operating systems
– "embedded systems": small, specialized, but increasingly general (often Linux)

Unix operating system

• developed ~1971 at Bell Labs
– by Ken Thompson and Dennis Ritchie

• clean, elegant design
– at least in the early days

• efficient, robust, easy to adapt, fun
– widely adopted in universities, spread from there

• written in C, so can be easily ported to new machines
– runs on everything (not just PC's)

• influence
– languages, tools, de facto standard environment
– enabled workstation hardware business (e.g., Sun Microsystems)
– supports a lot of Internet services and infrastructure

often as Linux variant

Linux

• a version of Unix written from scratch
– by Linus Torvalds, Finnish student (started 1991)

• source code freely available (kernel.org)
– large group of volunteers making contributions
– anyone can modify it, fix bugs, add features
– Torvalds approves, sets standard
– commercial versions make money by packaging and support,

not by selling the code itself

• used by most major sites, including
– Google, Amazon, Facebook, Twitter, YouTube, ABC, CBS, CNN, ...

To run programs, the operating system must

• fetch program to be run (usually from disk)
• load it into RAM

– maybe only part, with more loaded as it runs (dynamic libraries)
• transfer control to it
• provide services to it while it runs

– reading and writing info on disk
– communications with other devices, network, ...

• regain control and recover resources when program is finished
• protect itself from errant program behavior
• share memory and other resources among multiple programs

running "at the same time"
– manage RAM, disks, network, ...
– protect programs from each other
– manage allocation of CPUs among multiple activities

Memory management

• what's in memory? over-simplified pictures:

• reality is more complicated
– pieces of programs are partly in RAM, partly on disk

can only execute instructions that are in RAM
• memory protection:

– making sure that one program can't damage another or the OS
• virtual memory:

– making it look like there is more RAM than there really is

Op sysOp sys my Word your Word

Op sys Word browser mail your prog

my browser yours

Unix:

Windows:

Virtual machines

• running other operating systems on top of an OS
– e.g., VMWare, VirtualBox, Xen, HyperV, Parallels, ...

• system calls from applications to "guest" OS are intercepted
by "host" OS
– e.g., guest == Windows 11 or Linux, host == macOS

• passed to guest OS, which handles them by converting
them into system calls to host OS

• not the same as "dual boot"

macOS

Mac app(s) Virtualbox (Mac app)

Windows

Win app Win app

Cloud computing: computer services via the
Internet
• large computer centers with many physical computers: "servers"

– lots of memory, disk capacity, network capacity
– centralized "data centers" (but there are often multiple data centers)
– examples: Amazon Web Services, Microsoft Azure, Google Cloud, ...

• servers run virtual machines to share resources of physical
computers
– most cloud services run Linux

• client computers make requests of servers
– do computation, store or retrieve information, administer resources

• advantages for clients:
– easy to scale up or down as usage changes
– no need to buy or manage equipment
– can rent software as well as hardware
– centralized administration can be more efficient
– security should be better (but there's a single point of failure)

Browser as operating system

• a browser provides many of the services that an operating
system does
– can use "the cloud" for storage and computation
– programs mostly run in cloud; browser is an interface
– email, social networks, games, Google docs (and similar), ...

• how about a computer that only runs a browser?
– Chromebook: runs Chrome OS (Linux-based operating system)
– applications and data are in the cloud, not on computer itself
– very little local storage and local apps

