Lecture 9: Software systems

operating systems
— runs programs, controls the computer, stores information, communicates
- applications ("apps")
— programs that do things
- cloud computing, virtual machines, ...
— where boundaries become even less clear

- intellectual property
— copyrights, patents, licenses
- interfaces, standards, antitrust, ...
— agreements on how to communicate and inter-operate
- open source software
— freely available, non-proprietary
- jurisdiction
— where are the computers? where is the data? who has access to it?

Software systems come in lots of sizes

programs come in different sizes

— 10 - 20 lines (COS 109 psets and labs: tiny, like a response paragraph)
programs in intro courses like COS 126

— 100 - 300 lines? (like a short paper?)
projects in courses like COS 333

— 2000 - 5000 lines (like a substantial term paper or a thesis)
significant applications

— 100,000 - 1,000,000 lines (like a book, maybe a very big book)
operating systems, major applications

— 10,000,000 and up (like a multi-volume book?)

a typical programmer produces at most a few thousand lines of
production code per year

Operating system

a program that controls the resources of a computer
— interface between hardware and all other software
— examples: MS-DOS, Windows 3.0/95/98/NT/ME/2000/XP/Vista/7/8/10/11
macQOS, iOS, Android, ...
Unix / Linux

- runs other programs ("applications”, your programs, ...)

- manages information on disk (file system)

- controls peripheral devices, communicates with outside world
- keeps things from interfering with each other

- provides a level of abstraction above the raw hardware
— makes the hardware appear to provide high-level services
— makes programming much easier

What an operating system does

manages CPUs, schedules and coordinates running programs
— switches CPU among programs that are actually computing
— suspends programs that are waiting for something (e.g., disk, network)
— keeps individual programs from hogging resources

manages primary memory (RAM)
— loads (parts of) programs in memory so they can run
— swaps them to disk and back if there isn’t enough RAM (virtual memory)
— keeps separate programs from interfering with each other
— and with the operating system itself (protection)

manages and coordinates input/output to devices
— disks, display, keyboard, mouse, network, ...
— keeps separate uses of shared devices from interfering with each other
— provides uniform interface to disparate devices

manages files on secondary storage (file system)
— provides hierarchy of folders/directories and files for storing information

History of general-purpose operating systems

1950's: signup sheets
— full access to entire bare computer
1960's: batch operating systems
— operators running batches of jobs
— 0S/360 (IBM)
1970's: time-sharing
— simultaneous access for multiple users
— Unix (Bell Labs; Ken Thompson & Dennis Ritchie)
1980's: personal computers, single user systems
— DOS, Windows, MacOS, Unix

1990's: personal computers, PDA's, ...
— PalmOS, Windows CE, Unix / Linux
2000's: Windows, Unix/Linux, MacOSX (a Unix variant)

2010 and beyond: Apple vs. Google vs. Microsoft
— macOS, iOS, Android, ChromeQS, ... (all Unix/Linux-based),

— cloud computing (Amazon)
not all computers have general-purpose operating systems
— "embedded systems": small, specialized, but increasingly general (often Linux)

7
ik

-
Ve
.

Unix operating system

- 4
) E g =
s ..’/l",,‘..

developed ~1971 at Bell Labs
— by Ken Thompson and Dennis Ritchie
clean, elegant design
— atleast in the early days
efficient, robust, easy to adapt, fun
— widely adopted in universities, spread from there

written in C, so can be easily ported to new machines
— runs on everything (not just PC's)

» -
- 2
= . (
-
R oh %
z » P
o T
ot
Y
- X

P P o Tl P Ml P2 el

influence

— languages, tools, de facto standard environment

— enabled workstation hardware business (e.g., Sun Microsystems)

— supports a lot of Internet services and infrastructure
often as Linux variant

LinuXx

« a version of Unix written from scratch
— by Linus Torvalds, Finnish student (started 1991)

- source code freely available (kernel.org)
— large group of volunteers making contributions
— anyone can modify it, fix bugs, add features
— Torvalds approves, sets standard
— commercial versions make money by packaging and support,
not by selling the code itself

- used by most major sites, including
— Google, Amazon, Facebook, Twitter, YouTube, ABC, CBS, CNN, ...

To run programs, the operating system must

fetch program to be run (usually from disk)

load it into RAM

— maybe only part, with more loaded as it runs (dynamic libraries)
transfer control to it
provide services to it while it runs

— reading and writing info on disk

— communications with other devices, network, ...
regain control and recover resources when program is finished
protect itself from errant program behavior
share memory and other resources among multiple programs
running "at the same time"

— manage RAM, disks, network, ...

— protect programs from each other
— manage allocation of CPUs among multiple activities

Memory management

- what's in memory? over-simplified pictures:

Unix:

Op sys | my Word | your Word | my browser yours

Windows:

Op sys Word browser mail | your prod

- reality is more complicated
— pieces of programs are partly in RAM, partly on disk
can only execute instructions that are in RAM
* memory protection:
— making sure that one program can't damage another or the OS

 virtual memory:
— making it look like there is more RAM than there really is

Virtual machines

running other operating systems on top of an OS

— e.g., VMWare, VirtualBox, Xen, HyperV, Parallels, ...
system calls from applications to "guest" OS are intercepted
by "host" OS

— e.g., guest == Windows 11 or Linux, host == macOS
passed to guest OS, which handles them by converting
them into system calls to host OS

not the same as "dual boot"
Win app Win app

Windows

Mac app(s) || Virtualbox (Mac app)

macOS

Cloud computing: computer services via the

Internet
- large computer centers with many physical computers: "servers”

lots of memory, disk capacity, network capacity
centralized "data centers" (but there are often multiple data centers)
examples: Amazon Web Services, Microsoft Azure, Google Cloud, ...

- servers run virtual machines to share resources of physical
computers

most cloud services run Linux

- client computers make requests of servers

do computation, store or retrieve information, administer resources

- advantages for clients:

easy to scale up or down as usage changes

no need to buy or manage equipment

can rent software as well as hardware

centralized administration can be more efficient

security should be better (but there's a single point of failure)

Browser as operating system

- a browser provides many of the services that an operating
system does

— can use "the cloud" for storage and computation
— programs mostly run in cloud; browser is an interface
— email, social networks, games, Google docs (and similar), ...
- how about a computer that only runs a browser?
— Chromebook: runs Chrome OS (Linux-based operating system)
— applications and data are in the cloud, not on computer itself
— very little local storage and local apps

Samsung XE303C12 11.6" Chromebook,
Samsung Exynos 5250 Dual Core, 16GB
Solid State Drive, 2GB DDR3L, 2x2 802.11n,

USB 3.0, HDMI, ChromeOS - (Scratch &
Dent)

$99.99

Condition Refurbished - Scratch & Dent

Screen Size 11.6"

Quantity 1§ Limit 10 per customer

Free Standard shipping for Prime members

