Lecture 6: Inside the processor, continued

computer architecture: real machines

caching: making things seem faster than they are
how chips are made

Moore's Law

von Neumann architecture

Turing machines



Technology evolution (dates are approximate)

1920-1960: vacuum tubes
— expensive, unreliable, fragile, bulky, power hungry

1947 first transistor (Bell Labs)
— low power, mechanically robust, tiny

1950 discrete transistors
— binary switches: voltage on one lead controls current through others

1960 ... integrated circuits
— grow an entire circuit on a silicon surface
— continuously increasing density of individual components



Fabrication: making chips

- grow layers of conducting and insulating materials on a thin
wafer of very pure silicon
- each layer has intricate pattern of connections
— created by complex sequence of chemical and photographic processes
- dice wafer into individual chips, put into packages
— vyield is less than 100%, especially in early stages
- how does this make a computer?
— when conductor on one layer crosses one on lower layer,
voltage on upper layer controls current on lower layer
— this creates a transistor that acts as on-off switch
that can control what happens at another transistor

- wire widths keep getting smaller: more components in given area

— today ~ 0.003 micron = 3 nanometers
1 micron == 1/1000 of a millimeter (human hair is about 100 microns)

— eventually this will stop




Moore's Law (1965, Gordon Moore, founder & former CEO of Intel)
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- number of transistors on a chip

doubles about every 18 months
— and has done so since ~1961

°* consequences
— cheaper, faster, smaller, less energy per unit
— ubiquitous computers and computing

 limits to growth SUELUAMNNN =52 W
— fabrication plants cost $2-5B; most are outside US 1929-2023
— line widths are nearing fundamental limits
— complexity is increasing
— processors don't run faster
— speed of light limitations across chip area

-  maybe some other technology will come along
— atomic level; quantum computing
— optical
— biological: DNA computing



Transistor counts and Moore's Law

42 Years of Microprocessor Trend Data
- T T T T A
100 ? 4 1 Transistors
TR I S R S A4 ° | (thousands)
5 A ALR, A‘ ;
T ) . S S N LAaats s - I§|nrgfqle-Thread
' v ooy, erformance
. T (SpecINT x 10°)
10% F AQA} *ﬁ‘ B

2 *‘: Frequency (MHz
10° | A ‘G;ﬂ i 11 I
j O : Screens

A 3 .ﬂ-. . Fe Typical Power

o 2
o2 |- Aaly vy PLIRF Y WY ] (Watts)
. u®® > v :v BERPARS
1 S ',:! 3y v '.:..'i Number of
10 A s Y WEd * Logical Cores
Fy v v YvY vv &
0 - v ; X2 T
10 _" ............ . ..... ’ ........ ‘ ,,,,, .’.“mm” .......... .......................... —
| l | |
1970 1980 1990 2000 2010 2020
Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp




Computer architecture

what instructions does the CPU provide?

CPU design involves complicated tradeoffs among functionality, speed,
complexity, programmability, power consumption, ...
Intel and ARM are unrelated, totally incompatible
Intel: lot more instructions, many of which do complex operations
e.g., add two memory locations and store result in a third
ARM: fewer instructions that do simpler things, but faster
e.g., load, add, store to achieve same result

how is the CPU connected to the RAM and rest of machine?

memory is the real bottleneck; RAM is slow (25-50 nsec to fetch)

modern computers use a hierarchy of memories (caches) so that frequently or
recently used information is accessible to CPU without going to RAM

what tricks do designers play to make it go faster?

overlap fetch, decode, and execute so several instructions are in various
stages of completion (pipeline)

do several instructions in parallel

do instructions out of order to avoid waiting

multiple "cores" (CPUs) in one package to compute in parallel
GPUs to do some computations in parallel at high speed

speed comparisons are hard, not very meaningful



Caching: making things seem faster than they are

cache: a small very fast memory for recently-used information
— loads a block of info around the requested info
- CPU looks in the cache first, before looking in main memory
— separate caches for instructions and data
« CPU chip usually includes multiple levels of cache
— faster caches are smaller
- caching works because recently-used info is likely to be used
again soon
— therefore more likely to be in the cache already
- cache usually loads nearby information at the same time
— nearby information is more likely to be used soon
— therefore more likely to be in the cache when needed
- this kind of caching is invisible to users
— except that machine runs faster than it would without caching
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Caching is a much more general idea

- things work more efficiently if what we need is close

- if we use something now

— we will likely use it again soon (time locality)

— or we will likely use something nearby soon (space locality)
- other caches in computers:

— CPU registers

— cache(s) in CPU

— RAM as a cache for disk or network or ...

— disk as a cache for network

— network caches as a cache for faraway networks

— caches at servers

- some are automatic (in hardware), some are controlled by
software, some you have some control over



Other kinds of computers

not all computers are Macs or PCs

- "supercomputers”
— usually large number of fairly standard processors
— extra instructions for well-structured data
- "distributed" computing
— sharing computers and computation by network
— e.g., web servers
- embedded computers
— phones, games, music players, ...
— cars, planes, weapons, ...
- GPU (graphics processing unit)
— specialized processor for 3-d graphics, other streaming computations

- each represents some set of tradeoffs among cost,
computing power, size, speed, reliability, ...



Turing machines

in 1936, Turing showed that a simple model of a
computer is universal

— now called a Turing machine
all computers have the same computational power ,
— i.e., they can compute the same things v ;(\(1* i / &
— though they may vary enormously in speed, memory, etc. Alan Turing *38 )
- equivalence proven / demonstrated by simulation 19121954

— any machine can simulate any other

— a "universal Turing machine" can simulate any other
Turing machine

https://www.youtube.com/watch?v=E3keLeMwfHY

- see also
— Turing Test
— Turing Award
— Enigma



Fundamental ideas

programmable, general-purpose computers
— simple instructions for arithmetic, moving data, comparison of values
— select next instruction based on results
— controls its own operation according to computed results
von Neumann architecture
— change what it does by putting new instructions in memory
— instructions & data stored in same memory, indistinguishable except by context
attributed to von Neumann, 1946 (and Charles Babbage, Analytical Engine, 1830's)
— logical structure largely unchanged for 60+ years, evolving now
— physical structures changing very rapidly
Turing machines
— all computers have exactly the same logical power:
they can compute exactly the same things; differ only in performance
— one computer can simulate another computer;
a program can simulate a computer

everything is ultimately represented in bits (binary numbers)

— groups of bits represent larger entities: numbers of various sizes, letters in
various character sets, instructions, memory addresses

— interpretation of bits depends on context
one person's instructions are another person's data



