
Lecture 6: Inside the processor, continued

• how does the CPU work?
– what operations can it perform?
– how does it perform them? on what kind of data?
– where are instructions and data stored?

• some short, boring programs to illustrate the basics
• a toy machine to try the programs

– a program that simulates the toy machine
– so we can run programs written for the toy machine

• computer architecture: real machines
• caching: making things seem faster than they are
• how chips are made
• Moore's Law
• von Neumann architecture
• Turing machines

Technology evolution (dates are approximate)

• 1920-1960: vacuum tubes
– expensive, unreliable, fragile, bulky, power hungry

• 1947 first transistor (Bell Labs)
– low power, mechanically robust, tiny

• 1950 discrete transistors
– binary switches: voltage on one lead controls current through others

• 1960 ... integrated circuits
– grow an entire circuit on a silicon surface
– continuously increasing density of individual components

Fabrication: making chips

• grow layers of conducting and insulating materials on a thin
wafer of very pure silicon

• each layer has intricate pattern of connections
– created by complex sequence of chemical and photographic processes

• dice wafer into individual chips, put into packages
– yield is less than 100%, especially in early stages

• how does this make a computer?
– when conductor on one layer crosses one on lower layer,

voltage on upper layer controls current on lower layer
– this creates a transistor that acts as on-off switch

that can control what happens at another transistor
• wire widths keep getting smaller: more components in given area

– today ~ 0.003 micron = 3 nanometers
1 micron == 1/1000 of a millimeter (human hair is about 100 microns)

– eventually this will stop

Moore's Law (1965, Gordon Moore, founder & former CEO of Intel)

• number of transistors on a chip
doubles about every 18 months
– and has done so since ~1961

• consequences
– cheaper, faster, smaller, less energy per unit
– ubiquitous computers and computing

• limits to growth
– fabrication plants cost $2-5B; most are outside US
– line widths are nearing fundamental limits
– complexity is increasing
– processors don't run faster
– speed of light limitations across chip area

• maybe some other technology will come along
– atomic level; quantum computing
– optical
– biological: DNA computing

1929-2023

Transistor counts and Moore's Law

Computer architecture
• what instructions does the CPU provide?

– CPU design involves complicated tradeoffs among functionality, speed,
complexity, programmability, power consumption, …

– Intel and ARM are unrelated, totally incompatible
Intel: lot more instructions, many of which do complex operations

e.g., add two memory locations and store result in a third
ARM: fewer instructions that do simpler things, but faster

e.g., load, add, store to achieve same result
• how is the CPU connected to the RAM and rest of machine?

– memory is the real bottleneck; RAM is slow (25-50 nsec to fetch)
modern computers use a hierarchy of memories (caches) so that frequently or

recently used information is accessible to CPU without going to RAM
• what tricks do designers play to make it go faster?

– overlap fetch, decode, and execute so several instructions are in various
stages of completion (pipeline)

– do several instructions in parallel
– do instructions out of order to avoid waiting
– multiple "cores" (CPUs) in one package to compute in parallel
– GPUs to do some computations in parallel at high speed

• speed comparisons are hard, not very meaningful

Caching: making things seem faster than they are

• cache: a small very fast memory for recently-used information
– loads a block of info around the requested info

• CPU looks in the cache first, before looking in main memory
– separate caches for instructions and data

• CPU chip usually includes multiple levels of cache
– faster caches are smaller

• caching works because recently-used info is likely to be used
again soon
– therefore more likely to be in the cache already

• cache usually loads nearby information at the same time
– nearby information is more likely to be used soon
– therefore more likely to be in the cache when needed

• this kind of caching is invisible to users
– except that machine runs faster than it would without caching

CPU block diagram (non-artist's conception)

Control unit
Registers

ALU, GPU

PC

memory

ALU = arithmetic/
logic unit

PC = program counter
= location of next instr

Cache

Caching is a much more general idea

• things work more efficiently if what we need is close
• if we use something now

– we will likely use it again soon (time locality)
– or we will likely use something nearby soon (space locality)

• other caches in computers:
– CPU registers
– cache(s) in CPU
– RAM as a cache for disk or network or …
– disk as a cache for network
– network caches as a cache for faraway networks
– caches at servers

• some are automatic (in hardware), some are controlled by
software, some you have some control over

Other kinds of computers

• not all computers are Macs or PCs

• "supercomputers"
– usually large number of fairly standard processors
– extra instructions for well-structured data

• "distributed" computing
– sharing computers and computation by network
– e.g., web servers

• embedded computers
– phones, games, music players, ...
– cars, planes, weapons, ...

• GPU (graphics processing unit)
– specialized processor for 3-d graphics, other streaming computations

• each represents some set of tradeoffs among cost,
computing power, size, speed, reliability, ...

Turing machines

• in 1936, Turing showed that a simple model of a
computer is universal
– now called a Turing machine

• all computers have the same computational power
– i.e., they can compute the same things
– though they may vary enormously in speed, memory, etc.

• equivalence proven / demonstrated by simulation
– any machine can simulate any other
– a "universal Turing machine" can simulate any other

Turing machine
https://www.youtube.com/watch?v=E3keLeMwfHY

• see also
– Turing Test
– Turing Award
– Enigma

Alan Turing *38
1912-1954

Fundamental ideas
• programmable, general-purpose computers

– simple instructions for arithmetic, moving data, comparison of values
– select next instruction based on results
– controls its own operation according to computed results

• von Neumann architecture
– change what it does by putting new instructions in memory
– instructions & data stored in same memory, indistinguishable except by context

attributed to von Neumann, 1946 (and Charles Babbage, Analytical Engine, 1830's)
– logical structure largely unchanged for 60+ years, evolving now
– physical structures changing very rapidly

• Turing machines
– all computers have exactly the same logical power:

they can compute exactly the same things; differ only in performance
– one computer can simulate another computer;

a program can simulate a computer
• everything is ultimately represented in bits (binary numbers)

– groups of bits represent larger entities: numbers of various sizes, letters in
various character sets, instructions, memory addresses

– interpretation of bits depends on context
one person's instructions are another person's data

